首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
A basic understanding related to the immobilization of chromium by bacteria is essential for chromate pollutant remediation in the environment. In this work, we studied the Cr(VI) uptake mechanism of living Ochrobactrum anthropi and the influence of a bacterial culture medium on the Cr-immobilization process. It was found that the Cr-immobilization ratio of bacteria in Tris-HCl buffer is higher than in LB medium. X-ray photoelectron spectroscopy (XPS) and electron paramagnetic resonance (EPR) analysis revealed that the chromium accumulated on bacteria were mostly in Cr(III) states. Scanning electron microscopy (SEM) and atomic force microscopy (AFM) observations showed that noticeable Cr(III) precipitates were accumulated on bacterial surfaces. AFM roughness analysis revealed that the surface roughness of bacteria increased greatly when the bacteria-Cr(VI) interaction was in Tris-HCl buffer rather than in LB solution. Transmission electron microscopy (TEM) thin section analysis coupled with energy-dispersive X-ray spectroscopy showed that Cr(III) is also distributed in bacterial inner portions. A chromium-immobilization mechanism considering the participation of both bacterial inner portions and bacterial surfaces of living Ochrobactrum anthropi was proposed, whereas the bacterial surface was the dominant part of the immobilization of Cr(III). This work also proved that the control of Cr immobilization by living Ochrobactrum anthropi could be achieved via adjusting the bacterial culture medium.  相似文献   

2.
The ennoblement of the free corrosion potential (E(corr)) of AISI 316L stainless steel which did not occur in synthetic fresh water (SFW), was observed after introduction of glucose oxidase (Gox) and glucose, or of hydrogen peroxide (H(2)O(2)). The composition of the surface was monitored using AFM and XPS, a detailed XPS analysis being based on the discrimination between oxygen of organic and inorganic nature proposed in a previous study. In H(2)O(2) medium, the main changes regarding the inorganic phase were the increase of the oxygen concentration in the passive film, the increase of the molar concentration ratio of oxidized species Fe(ox)/Cr(ox) and the growth of nanoparticles, presumably made of ferric oxide/hydroxide. In Gox medium, no significant changes were observed in both oxygen concentration and Fe(ox)/Cr(ox) ratio, but the density of colloidal particles decreased, indicating a dissolution of Fe oxide/hydroxide under the influence of gluconate. In contrast with H(2)O(2), in SFW and Gox the amount of organic compounds increased due to the accumulation of polysaccharides and proteins. The influence of glucose oxidase on the ennoblement of stainless steel is not due to indirect effects of H(2)O(2) through the change of surface composition. The E(corr) ennoblement seems to be directly due to the presence of H(2)O(2) and to the electrochemical behavior of H(2)O(2) and related oxygen species. This consideration is important for understanding and controlling microbial influenced corrosion.  相似文献   

3.
A3钢在氧化硫硫杆菌作用下的腐蚀行为   总被引:1,自引:0,他引:1  
李松梅  杜娟  刘建华  于美 《物理化学学报》2009,25(11):2191-2198
采用表面分析技术、失重法和电化学测试研究了A3钢在氧化硫硫杆菌(T.t)作用下的腐蚀行为. 扫描电子显微镜(SEM)分析结果表明, 与无菌体系相比, 氧化硫硫杆菌会在A3钢表面形成致密的生物膜和腐蚀产物膜. 去除膜层后, 无菌体系中的试样出现点蚀, 氧化硫硫杆菌体系中试样呈现为均匀腐蚀. 浸泡三周后, 氧化硫硫杆菌体系中A3钢的腐蚀失重远小于无菌体系. 电化学交流阻抗谱(EIS)测试结果显示, 在浸泡10 d后, 氧化硫硫杆菌中的电极表面只存在两个时间常数, 这表明氧化硫硫杆菌会在试样表面形成致密且附着力非常强的产物膜层, 有效地阻碍了腐蚀介质对基体的侵蚀. 极化曲线结果表明, 浸泡20 d后, 氧化硫硫杆菌的存在使得金属具有较小的自腐蚀电流密度.  相似文献   

4.
Bioremediation has been a considerable method for treating Cr(VI) contamination. Bacterial surface changes of Ochrobactrum anthropi during Cr biosorption was investigated in this study. We found that Cr adsorption capacity increased with the increase of initial Cr(Ⅵ) concentration. Atomic force microscope (AFM) morphologic analysis combined with surface roughness analysis indicated that the bacterial surfaces became rougher during Cr uptake process. X-ray photoelectron spectroscopy (XPS) showed that Cr(Ⅲ) was adsorbed on the bacterial surfaces. Fourier transform infrared (FT-IR) analysis showed that surface functional groups including C-O and C-N might be involved in the Cr biosorption process.  相似文献   

5.
The evolution of the surface of a conventional stainless steel (AISI 316L) immersed in aqueous medium simulating fresh water (pH approximately 8) was studied using XPS and AFM. A detailed analysis of XPS spectra allowed a distinction to be made between oxygen of organic and inorganic nature. During the first 48 h, the main changes concern the inorganic phase: the oxygen concentration in the passive layer increases, owing both to oxidation of metal elements, including conversion of Fe(II) to Fe(III), and to hydration; the molar ratio of oxidized species Fe(ox)/Cr(ox) decreases slightly; the formation of colloidal particles, presumably made of ferric hydroxide, is observed by AFM. After longer periods of immersion, the Fe(ox)/Cr(ox) is higher, while the coating of colloidal particles reaches a full surface coverage. The amount of organic compounds increases further and the XPS spectra reveal the accumulation of polysaccharides and proteins, which indicate that these organic compounds are of biological origin.  相似文献   

6.
王彬  杜敏  张静 《物理化学学报》2011,27(1):120-126
采用失重法、交流阻抗(EIS)及傅里叶变换红外光谱(FT-IR)、原子力显微镜(AFM)、X射线光电子能谱(XPS)等表面分析测试方法首次研究了硫脲基咪唑啉衍生物(TAI)作为抑制CO2腐蚀的气液双相缓蚀剂的缓蚀行为. 结果表明, 该硫脲基咪唑啉缓蚀剂能有效地抑制Q235 钢在气液双相中的CO2腐蚀. AFM测试结果表明该缓蚀剂能显著地降低碳钢表面的腐蚀破坏, 并且由于碳钢表面形成的缓蚀剂吸附膜的疏水作用,可在AFM探头和碳钢表面之间检测到更大的粘附力, 而探针与试样表面之间的长程静电斥力在气相中增加,在液相中由于表面电荷的屏蔽效应而减小. XPS和FT-IR 光谱测试表明液相中和气相中在碳钢表面形成吸附膜的缓蚀剂成分分别是硫脲基咪唑啉衍生物和其酸水解产物——酰胺. 以上结果也进一步证实了咪唑啉衍生物在酸性溶液中的水解机理.  相似文献   

7.
Biofilms are complex microbial communities with important biological functions including enhanced resistance against external factors like antimicrobial agents. The formation of a biofilm is known to be strongly dependent on substrate properties including hydrophobicity/hydrophilicity, structure, and roughness. The adsorption of (macro)molecules on the substrate, also known as conditioning film, changes the physicochemical properties of the surface and affects the bacterial adhesion. In this study, we investigate the physicochemical changes caused by Periwinkle wilt (PW) culture medium conditioning film formation on different surfaces (glass and silicon) and their effect on X. fastidiosa biofilm formation. Contact angle measurements have shown that the film formation decreases the surface hydrophilicity degree of both glass and silicon after few hours. Atomic force microscopy (AFM) images show the glass surface roughness is drastically reduced with conditioning film formation. First-layer X. fastidiosa biofilm on glass was observed in the AFM liquid cell after a period of time similar to that determined for the hydrophilicity changes. In addition, attenuation total reflection-Fourier transform infrared (ATR-FTIR) spectroscopy supports the AFM observation, since the PW absorption spectra increases with time showing a stronger contribution from the phosphate groups. Although hydrophobic and rough surfaces are commonly considered to increase bacteria cell attachment, our results suggest that these properties are not as important as the surface functional groups resulting from PW conditioning film formation for X. fastidiosa adhesion and biofilm development.  相似文献   

8.
利用原子力显微镜和分子技术研究海水微生物腐蚀(英文)   总被引:5,自引:0,他引:5  
方汉平  徐立冲  张彤 《电化学》2003,9(2):164-169
生物膜在自然界无处不在,但生物膜造成的腐蚀却基本上被忽视.本文展示了几种化学和微生物学新方法在海水微生物腐蚀研究中的应用.原子力显微镜用来揭示生物最初形成的机理和钢在受污染海水中的腐蚀程度,16SrDNA/RNA技术则用来分析生物膜中的微生物组成.试验结果表明,微生物腐蚀在6d内就已经开始了,腐蚀体积与时间的2.83次方成正比;腐蚀生物膜中的微生物以硫酸还原菌(脱硫弧菌科)为最多,其次是梭状芽孢杆菌.  相似文献   

9.
The biofilm formation of a strain of the extremophile bacterium Acidiphilium sp., capable of donating electrons directly to electrodes, was studied by different surface characterization techniques. We develop a method that allows the simultaneous study of bacterial biofilms by means of fluorescence microscopy and atomic force microscopy (AFM), in which transparent graphitic flakes deposited on a glass substrate are used as a support for the biofilm. The majority of the cells present on the surface were viable, and the growth of the biofilms over time showed a critical increase of the extracellular polymeric substances (EPS) as well as the formation of nanosized particles inside the biofilm. Also, the presence of Fe in Acidiphilium biofilms was determined by X‐ray photoelectron spectroscopy (XPS), whereas surface‐enhanced infrared absorption spectroscopy indicated the presence of redox‐active proteins.  相似文献   

10.
In this study, we reveal the microbiologically influenced corrosion (MIC) behavior of the new electroless NiP-TiNi nanocomposite coating in simulated seawater using the electrochemical impedance spectroscopy (EIS) technique after different periods of incubation time (7, 10, 14, 21, 28 days) in a sulfate-reducing bacteria (SRB) medium. The biofilm formation and the corrosion products were characterized using the scanning electron microscope (SEM) and X-ray photoelectron spectroscopy (XPS). The EIS results revealed the carbon steel (CS)/NiP-TiNi and NiP-TiNi/SRB biofilm interfaces' characteristics after different incubation times in the SRB media. EIS measurements revealed that the NiP-TiNi nanocomposite coating's MIC resistances are superior relative to API X80 carbon steel and a TiNi-free NiP coating, with ∼93% of corrosion inhibition efficiency after 28 days of incubation.  相似文献   

11.
(Cr,Al)N protective coatings were deposited using direct current (DC) and high power pulse magnetron sputtering (HPPMS) technology. The chemical analysis of the surface near region of the coatings was performed by means of X‐ray photoelectron spectroscopy (XPS) and was correlated to the deposition parameters and resulting coating morphology. A surface oxidation process was observed by means of angle resolved XPS studies and XPS sputter profiles. Both DC and HPPMS coatings showed a non‐stoichiometric chemical composition with a significant excess of cations (chromium and aluminum) in the bulk structure, leading to a metastable phase. The passivation reaction of the surface near region leads to an anion to metal ratio which goes along with an enrichment of aluminum in the surface near region as a thermodynamically favored composition in equilibrium with the ambient atmosphere. Interestingly, the variation of the pulse duration of the HPPMS process, which led to a change of the peak current, had a strong influence on the resulting composition of the surface near region. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
Zn–Cr alloyed coatings electrochemically deposited are of high interest for leading steel manufacturing companies because of their novel properties and high corrosion resistance compared with conventional Zn coatings on steel. For tuning and optimizing the properties of the electrodeposited Zn–Cr coatings, a broad range of the deposition conditions must be studied. For this reason, two different types of material were investigated in this study, one with a low electrolyte temperature and one with an elevated electrolyte pH, compared with the standard values. Because different corrosion performance and delamination behaviour of the layers were observed for the two types, advanced surface analysis was conducted to understand the origin of this behaviour and to discover differences in the formation of the coatings. The topmost surface, the shallow subsurface region, and the whole bulk down to the coating–steel interface surface were analysed in detail by X-ray photoelectron spectroscopy (XPS) and high-resolution scanning Auger electron spectroscopy to determine the elemental and the chemical composition. For better understanding of the resulting layer structure, multiple reference samples and materials were measured and their Auger and XPS spectra were fitted to the experimental data. The results showed that one coating type is composed of metallic Zn and Cr, with oxide residing only on the surface and interface, whereas the other type contains significant amounts of Zn and Cr oxides throughout the whole coating thickness.  相似文献   

13.
A3钢在芽孢杆菌作用下的腐蚀行为   总被引:2,自引:0,他引:2  
采用表面分析技术、失重法和电化学测试技术研究了A3钢在芽孢杆菌(Bacillus)作用下的腐蚀行为.扫描电子显微镜(SEM)分析结果表明,浸泡7d时,芽孢杆菌会在A3钢表面形成致密的生物膜,有效阻隔了溶液对基体的腐蚀,抑制了腐蚀过程.电化学交流阻抗测试结果显示,含菌体系中的试样表面经历了2个时间常数→3个时间常数→2个时间常数的变化过程.失重法和极化曲线测试结果表明,芽孢杆菌的细菌活性对生物膜的保护作用有着决定性的影响,当微生物活性下降,生物膜的保护能力也会大幅降低.  相似文献   

14.
《Analytical letters》2012,45(11):2255-2271
Abstract

Passivation of 304 and 316 stainless steels in various acid solutions was studied as a function of exposure time and acid concentration. Nitric acid, citric acid, and the commercial Citrisurf (a commercial citric acid–based passivating solution, Stellar Solutions, USA) were compared. The materials were studied by low‐angle PXRD (powder x‐ray diffraction), XRF (x‐ray fluorescence), SEM (secondary electron microscopy), and XPS (x‐ray photoelectron spectroscopy). As might be expected, the measurements showed increased Cr:Fe ratios at the surface following acid passivation. Using the combination of characterization methods, it was possible to generate concentration‐depth profiles, and these suggest that chromium enrichment can penetrate several micrometers into the surface for nitric acid treatment, and this is related to some surface damage. The low‐angle PXRD work illustrated that complex phases are formed at the passivated surface, and these phases exhibit a rich structural chemistry. It is concluded that citric acid–based passivating agents result in more coherent oxide surfaces that are more resistant to corrosion.  相似文献   

15.
Biofilms are assemblages of microorganisms and their associated extracellular products at an interface and typically with an abiotic or biotic surface. The study of the morphology of biofilms is important because they are associated with processes of biofouling, corrosion, catalysis, pollutant transformation, dental caries, drug resistance, and so forth. In the literature, biofilms have been examined by atomic force microscopy (AFM), which has proven to be a potent tool to study different aspects of the biofilm development on solid surfaces. In this work, we used AFM to investigate topographical changes during the development process of Enterococcus faecalis biofilms, which were generated on sterile cellulose nitrate membrane (CNM) filters in brain heart infusion (BHI) broth agar blood plates after 24, 36, 72, 192, and 360 h. AFM height images showed topographical changes due to biofilm development, which were used to characterize several aspects of the bacterial surface, such as the presence of extracellular polymeric substance, and the biofilm development stage. Changes in the development stage of the biofilm were shown to correlate with changes in the surface roughness as quantified through the mean roughness.  相似文献   

16.
The surface characteristics and corrosion behaviour of the AZ31 magnesium alloy exposed to a high relative humidity (RH) atmosphere were investigated. During the first 15 days of humidity test at 98% RH and 50 °C, a significant increase of magnesium carbonate and a decrease of magnesium oxide were detected on the surface film by XPS; after this stage, increased exposure times did not produce substantial changes on the relative amounts of these compounds. The surface film of commercially pure magnesium, also examined for comparison purposes, revealed more magnesium carbonate and less magnesium oxide compared with the AZ31 alloy. Unlike the AZ31 alloy, the surface of pure Mg disclosed almost complete substitution of MgO by magnesium carbonate after 30 days of exposure time. Mass gain values of tested specimens and scanning electron microscope characterisation of corroded surfaces indicated lower corrosion susceptibility of the AZ31 alloy compared with the commercially pure Mg, suggesting superior chemical stability of the oxide/hydroxide film formed over the magnesium–aluminium alloy surface. XPS and energy dispersive X‐ray (EDX) analyses did not revealed any substantial enrichment of aluminium in the corrosion products film on the AZ31 alloy after 30 days of testing. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

17.
The evolution of growth morphology and composition of deposits during the initial stages of Ni–P electrodeposition is studied using atomic force microscopy (AFM) and X-ray photoelectron spectroscopy (XPS). Combined electrochemical and surface analytical measurements show that the deposition process starts at relatively low cathodic potentials by instantaneous formation and growth of hemispherical centres. The phosphorus content of deposits in the initial deposition stages is found to increase gradually with the deposition time. Additional electrochemical and XPS measurements, carried out on Ni substrates under same polarisation conditions in a Ni2+ ion free electrolyte solution, show the occurrence of a time dependent Ni–P surface alloy formation indicating a strong Ni–P interaction. It is suggested that the very early stages of Ni–P electrodeposition involve a primary instantaneous nucleation of Ni followed by a Ni–P alloy formation induced by the strong Ni–P interaction. AFM images show that in advanced deposition stages the coalescence of growing Ni–P centres leads to formation of larger growth mounds. The evolution of the resulting surface roughness is analysed on the basis of the so-called dynamic scaling concept. The estimated values for the roughness exponent and the growth exponent (α=1.07±0.05 and β=0.28±0.05) correspond to a model involving a smoothing of the growing surface driven by surface diffusion.  相似文献   

18.
应用丝束电极技术比较了SRB生物膜以及硫化物膜对Q2 35碳钢腐蚀过程的影响机制 ,采用电位、电流扫描技术测试了生物膜和FeS膜下的碳钢腐蚀不均匀性特征 ,发现由于膜的导电性致使表面电位扫描已不能作为膜下局部腐蚀的判据 .动电位扫描表明无氧近中性溶液中 ,硫化物膜对碳钢具有一定保护作用 .电化学阻抗谱显示 ,硫化物膜电容增加缓慢 ,其极化电阻Rp 随时间呈先增后降的趋势 .与硫化物膜相比 ,生物膜表现出极大的电容 (10 4 ~ 10 5μF/cm2 ) ,且膜电容随时间呈S型增加 ,而极化电阻Rp 则呈指数下降 ,由此可知生物膜加速了腐蚀  相似文献   

19.
A series of poly(dimethylsiloxane)(PDMS)-4,4′-diphenylmethanediisocyanate(MDI)-poly(ethylene glycol)(PEG) multiblock copolymers were synthesized by employing two-step growth polymerization and investigated by AFM,XPS. contact angle system,protein adsorption and platelets adhesion measurements,respectively.It was found that as the molecular weight of PDMS increased,the surface of copolymers had increasing phase separation,while the increase in the molecular weight of PEG decreased the phase separation ext...  相似文献   

20.
In alkaline aqueous medium (pH 9), potassium ferricyanide was used as an oxidizing agent on InP. This electroless process was successfully controlled by capacity measurements, AFM and XPS analyses. For the first time, the chemical stability of the oxide has been studied against the strongest reducing agent in liquid ammonia (?50 °C): the solvated electron. It was obtained in two ways; an electroless process which involved the addition of metallic potassium and by cathodic galvanostatic treatment on InP in neutral medium. As a first result, the electroless process required a strong rinsing step of the surface by pure liquid ammonia. As a second result, the galvanostatic process gave also promising results. A significant decrease of the amount of oxide was evidenced by capacity measurements, AFM and XPS analyses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号