首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main results concerning selective properties for carbonate, sulfate and phosphate polyvinyl chloride (PVC) membranes based on neutral carriers and anion-exchangers are discussed. It is shown that for the investigated systems selectivity depends on the concentration ratio between anion-exchanger and neutral carrier. The shape of the curves (selectivity vs. neutral carrier concentration) corresponds to a mathematical model described earlier and determines the stoichiometry of the complexes of the anions with neutral carrier. The incorporation of anionic sites inside the anion-selective membrane, e.g., carbonate-selective, leads to an increase of carbonate selectivity in presence of lipophilic anions of the internal solution. Received: 28 July 1997 / Revised: 11 December 1997 / Accepted: 20 December 1997  相似文献   

2.
《Electroanalysis》2004,16(17):1459-1462
It has been found that replacing of several long‐chain alkyl substituents at the nitrogen atom of lipophilic quaternary ammonium salts (QAS) by methyls results in a dramatic increase of the potentiometric selectivity of ion‐selective electrodes (ISE) with QAS‐based plasticized PVC membranes to some divalent anions against the monovalent ones. The discussed effect of QAS cation nature on the potentiometric selectivity is also partly retained for ISE with neutral carrier‐based membranes doped with QAS to provide anion permselectivity. This opens up new possibilities to control the potentiometric selectivity of ISE for divalent anions by the appropriate selection of the anion exchanger.  相似文献   

3.
The improvement of the steric accessibility of exchange centers of higher quaternary ammonium salts (QAS) by replacing several long-chain alkyl substituents at the nitrogen atom with methyl groups enhanced the selectivity of ion-selective electrodes (ISEs) based on the specified ion exchangers for the SO 4 2? ion up to six orders of magnitude in the presence of singly charged anions. This can be qualitatively explained by the specific features of ion pair formation between quaternary ammonium cations and singly and doubly charged anions. The effect of the steric accessibility of the QAS exchange center on the selectivity of ISEs is partially retained in the presence of a neutral anion carrier, hexyl p-trifluoroacetylbenzoate (HTFAB), which is used for enhancing the selectivity for the sulfate ion in the presence of singly charged anions. A sulfate-selective electrode with a reasonable selectivity for practical purposes was proposed. It is based on the HTFAB-higher QAS ion pair bearing three methyl substituents at the nitrogen atom. The ISE was used in the analysis of natural water.  相似文献   

4.
New polymeric electrochemical sensors based on various neutral and charged organic ionophores were suggested. The new sensors have a high sensitivity to anions of various organic acids (acetic, oxalic, lactic, malic, succinic, tartaric, and citric) in a wide concentration range. The selectivity and the detection limit of the developed sensors with respect to anions of the acids were studied.  相似文献   

5.
Cobalt(III) 5,10,15‐tris(4‐tert‐butylphenyl) corrole was synthesized and incorporated into plasticized poly(vinyl chloride) membranes and studied as a neutral carrier ionophore via potentiometry. This cobalt(III) complex has binding affinity to nitrite, and the resulting membrane electrode yields reversible and Nernstian response toward nitrite. Enhanced nitrite selectivity is observed over other anions, including lipophilic anions such as thiocyanate and perchlorate when an appropriate amount of lipophilic cationic sites are added to the membrane phase. Detection limit to nitrite is ca. 5 µM. Using tributylphosphate as the plasticizer with the cobalt(III) corrole species yields electrodes with enhanced nitrate selectivity.  相似文献   

6.
The properties of the carbonate neutral carrier 4-( n-hexadecyl)-3-nitro-1-trifluoroacetylbenzene were compared with those of a similar carrier, without a nitro group, studied previously. In spite of differences in the Hammett constant of the carbonyl group responsible for interaction with the analyte, the analytical characteristics of both carriers, measured under the same conditions, were comparable. Special care was taken to avoid the presence of an excessive carbon dioxide level in the diffusion layer at the membrane-solution interface. The internal reference solution was prepared without carbonate components; the external solution was protected from contact with atmospheric carbon dioxide. Under such conditions the detection limit of both electrodes was extended to 10(-11 )mol L(-1), and the selectivity towards salicylate, chloride, and acetate was significantly improved.  相似文献   

7.
A vitamin U-bonded stationary phase was prepared and the retention behavior of inorganic anions was examined using ion chromatography. Inorganic anions were retained on the vitamin U-bonded stationary phase under acidic as well as neutral eluent conditions in the ion-exchange mode. The elution order of the examined anions under neutral eluent conditions was nearly the same as that observed in common ion exchange mode, while the elution order observed under acidic eluent conditions was completely different from that observed in common ion exchange mode. The retention of the analyte anions under the neutral eluent conditions was due to the sulfonium groups of the vitamin U, while protonated primary amino groups caused retention of the analyte anions with different selectivity under acidic conditions. The retention factor of the analyte anions increased with decreasing eluent concentration under both eluent conditions. The present system was applied to the determination of bromide and nitrate contained in seawater.  相似文献   

8.
The influence of salts containing lipophilic cations and anions on the electrical resistance of the membranes of calcium ion-selective macro- and micro-electrodes based on a neutral carrier is described. The resistance of macroelectrodes was decreased by a factor of about 50 or of about 3 compared to membranes without and with potassium tetrakis- (p-chlorophenyl)borate, respectively. No significant reduction of the membrane resistance was achieved for microelectrodes. The lower detection limit and the Ca2+/K+ selectivity factor were improved for both types of electrode.  相似文献   

9.
In this study, the migration behavior of charged and uncharged analytes was investigated under different conditions. Effective mobilities - electrophoretic mobilities under the influence of micelles - of cations, anions, and neutrals were measured at neutral, basic, and acidic pH (7.5, 11, and 2.2) using background electrolytes containing different sodium dodecyl sulfate (SDS) concentrations (0-90 mM) and acetonitrile (ACN) proportions (0-75%). SDS concentration and ACN proportion were found to have a tremendous effect on the effective mobilities and migration order of the model compounds. Although the SDS micelles preferably interact with neutrals and cations, hydrophobic bonds can also occur with anions. Cations, anions, and neutrals having rather different migration behaviors, it is possible to considerably enhance the selectivity of the method by adjusting properly the SDS concentration and the ACN proportion. These observations confirm the interest of using micellar electrokinetic chromatography not only for the separation of neutral substances but also to analyze charged compounds.  相似文献   

10.
Song F  Ha J  Park B  Kwak TH  Kim IT  Nam H  Cha GS 《Talanta》2002,57(2):263-270
Carbonate-selective membranes were prepared by incorporating a molecular tweezer-type carbonate-selective neutral carrier [N,N-dioctyl-3alpha,12alpha-bis(4-trifluoroacetylbenzyloxy)-5beta-cholan-24-amide] into a room temperature vulcanizing-type silicone rubber (3140 RTV-SR) matrix, and deposited on the planar-type electrodes (Pt containing Ag/AgCl electrodes formed on a ceramic plate) with and without an intermediary conducting polymer layer. Two types of solvent-soluble conducting polymers [poly(1-hexyl-3,4-dimethyl-2,5-pyrrolylene) or poly(3-octylthiophene-2,5-diyl)] have been examined as the solid contact material. Potentiometric properties of the resultant all-solid-state electrodes were evaluated in terms of their carbonate selectivity, response slope, potential stability and reproducibility. The sensitivity and carbonate selectivity of the SR membrane-based all-solid-state electrodes with conducting polymer solid contact were comparable to those of conventional electrodes. Experimental results also showed that the intermediary conducting polymer layer used in the all-solid-state electrodes greatly reduces the interference from dissolved oxygen.  相似文献   

11.
A new kind of neutral carrier is described, binuclear metalloporphyrin, which exhibits the anti-Hofmeister selectivity pattern for anions. A comparison of potentiometric response characteristics between the binuclear and mononuclear metalloporphyrins is discussed in view of the coordination chemistry of metalloporphyrins. The interaction between the ionophore and the analyte anion was investigated by UV/Vis and IR spectroscopy. The transfer process of the analyte anion across the membrane interface was studied by A.C. impedance measurements. The origin of the anti-Hofmeister selectivity sequence was explored by quantum chemical calculations.  相似文献   

12.
In this paper, the synthesis of a novel ionophore, chloro[5,10,15,20-tetrakis[2-(2,3,4,6-tetraacetyl-beta-D-glucopyranosyl)-1-O-phenyl]porphinato]manganese (MnT(o-glu)PPCl), and its application as a neutral carrier for a PVC membrane electrode are described. The MnT(o-glu)PPCl-based PVC membrane electrode shows a potentiometric responses to SCN- over a concentration range of 3.4 x 10(-7) - 1.0 x 10(-1) mol L(-1) with a Nernstian slope and a response time of 20 s. The electrode exhibits an anti-Hofmeister selectivity toward SCN- with respect to common coexisting anions. As active materials, MnT(o-glu)PPCl shows better selectivity toward SCN- than chloro(tetraphenylporphinato)manganese (MnTPPCl). The effect of the electrode membrane compositions has been studied and the experimental conditions were optimized. The electrode was applied to the determination of SCN- in body fluids with satisfactory results.  相似文献   

13.
A test electrode based on cyclotetrasiloxane containing ferrocenyl, hydroxide and amine moiety exhibits very good potentiometric performance toward anions. Especially, acetate ion shows non-Hofmeister behavior on selectivity. The addition of the tetraalkylammonium salt provides lipophilic cationic sites within the membrane and enhances the response to more lipophilic anions. As expected, potentiometric performances of slopes and detection limits for the most of lipophilic anions, such as ClO4 and SCN, are the most enhanced. However, the response to acetate ion was significantly decreased. In our knowledge, this is the first report that cyclic siloxane containing functional groups such as ferrocenyl moiety and hydroxyl group shows possible usage as a neutral carrier for an anion sensor.  相似文献   

14.
The separation of anionic, cationic and neutral drugs in microemulsion electrokinetic chromatography (MEEKC) was studied with a statistical experimental design. The concentration of sodium dodecyl sulfate (SDS, surfactant), 1-butanol (co-surfactant) and borate buffer and the factors Brij 35 (surfactant), 2-propanol (organic solvent) and cassette temperature were varied simultaneously, while the parameters pH (9.2), the concentration of octane (oil, 0.8% w/w), the voltage (10 kV) and the dimension of the fused-silica capillary, were kept constant. Eight different model substances were chosen with different hydrophobicities. Two of the analytes were positively charged, two were negatively charged, and the remaining four were neutral or close to neutral at the pH explored. The importance of each parameter on the separation window, the plate height and the retention factor for each of the analytes was studied by means of multiple linear regression (MLR) models. A new response was evaluated for anions, the quotient between the effective mobility in the microemulsion and the effective mobility in the corresponding buffer. Factors affecting selectivity changes were also explored, and it was found that SDS and 2-propanol had the largest effect on selectivity.  相似文献   

15.
《Electroanalysis》2004,16(11):922-927
A novel chloride PVC‐based membrane sensor based on a ruthenium(III) Schiff's base complex, as an excellent neutral carrier, has been developed. The ruthenium complex, in combination with a ketonic plasticizer and a cationic additive led to ISEs with fundamental characteristics, such as slope sensitivity, short response times and selectivity coefficients, which were sufficient for practical applications. The sensor with composition of 30% PVC, 62% benzyl acetate, 5% ruthenium(III) Schiff's base complex and 3% hexadecyltrimethyl ammonium bromide displays near‐Nernstian behavior in a wide concentration range (1.0×10?1–3.0×10?6 M with slope of ?54.5±0.5) with a detection limit of 2.0×10?6 M (71.0 ng per mL). The response of the electrode is independent on pH in the range of 4.0–10.0 and can it be used for at least ten weeks. The proposed electrode shows a very short response time (<20 s) in whole concentration range. The sensor displays high selectivity toward chloride ions over several organic and inorganic anions. It was successfully applied for the determination of chloride in serum samples. It was also used as an indicator electrode in the potentiometric titration of chloride ions with silver nitrate solution.  相似文献   

16.
We describe a new methodology to the selective trapping of priority pollutants that occur inherently as oxo-anions (e.g., perchlorate, chromate, arsenate, pertechnetate, etc.) or organic anions (e.g., salicylate, pharmaceuticals, and their metabolites, which are often chlorinated into potentially more harmful compounds). The typical approach to trapping anions is exchange into cationic hosts such as resins or layered double hydroxides. Both capacity and selectivity are limited by the equilibrium of the process and moreover are often subject to interference, e.g. by carbonate that is always present in water from atmospheric CO(2). Our approach takes advantage of the metastability of our cationically charged materials to instead trap by recrystallization to a new structure. Exceptionally high adsorption capacities for permanganate and perrhenate--studied as models for pertechnetate--were found for a Ag(I)-based cationic extended framework. The exchange capacity reached 292 and 602 mg/g, respectively, over five times the exchange capacity compared to conventional layered double hydroxides. Our cationic material can also selectively trap these and other toxic oxo-anions when nontoxic anions (e.g., nitrate, carbonate) were present in an over 100-fold excess concentration.  相似文献   

17.
An iron (III) ion selective PVC membrane electrode based on 1,7-dithia 12-crown-4 as a neutral carrier was prepared. Monovalent responses with a Nerstian slope of 56+1 mV/decade was observed for the Fe (III) ion-selective electrode within the concentration range 10?3–10?5 M Fe (NO3)3. The monovalent responses may be attributed to the formation of Fe (OH)2+ or Fe (OH)2(H2O)+4 species in aqueous solutions and the absorption of these ions into the PVC electrode membrane. The electrode exhibited good selectivity for Fe (III) in comparison with various alkali, alkali-earth and some heavy metal ions. The effects of the composition of the membrame, addition of STPB (sodium tetraphenyl borate), the concentration of internal solution of the electrode and anions in the test solutions were discussed.  相似文献   

18.
Kiy MM  Zaki A  Menhaj AB  Samadi A  Liu J 《The Analyst》2012,137(15):3535-3540
Many biosensors have been developed to detect Hg(2+) using thymine-rich DNA. While sensor response to various cations is often studied to demonstrate selectivity, the effect of anions has been largely overlooked. Anions may compete with DNA for metal binding and thus produce a false negative result. Anions cannot be added alone; the cation part of a salt may cause DNA compaction and other effects, obscuring the role of anions. We find that the sensitivity of a FRET-based Hg(2+) probe is independent of Na(+) concentration. Therefore, by using various sodium salts, any change in sensitivity can be attributed solely to the effect of anions. Halide salts, sulfides, and amines are strong inhibitors; anions containing oxo or hydroxyl groups (e.g. nitrate, sulfate, phosphate, carbonate, acetate, and citrate) do not interfere with Hg(2+) detection even at 100 mM concentration. Mercury hydrolysis and its diffusion into polypropylene containers can also strongly affect the detection results. We conclude that thymine-rich DNA should be useful for Hg(2+) detection in many environmental water samples.  相似文献   

19.
A rapid and simple method for separation and determination of inorganic anions by capillary zone electrophoresis was described. The detection was carried out directly with a diode array detector. The experimental conditions, such as concentration of carrier electrolyte, capillary length, voltage, and temperature were optimized. In order to improve selectivity, different organic modifiers were also investigated. The baseline separation of 10 light-absorbing anions was accomplished within 3.5 min with a background electrolyte consisting of 50 mM sodium tetraborate containing 5% MeOH. Linear plots were obtained in the concentration range of 0.1-10 microg/ml. With sample stacking injection, the quantitation limits of the anions were found to be in the range of 0.02-0.1 microg/ml. The proposed method was successfully applied to the determination of inorganic anions in environmental samples and in effluents of a power plant.  相似文献   

20.
The retention of ionogenic bases in liquid chromatography is strongly dependent upon the pH of the mobile phase. Chromatographic behavior of a series of substituted aniline and pyridine basic compounds has been studied on C18 bonded silica using acetonitrile-water (10:90) as the eluent with different pHs and at various concentrations of the acidic modifier counter anions. The effect of different acidic modifiers on solute retention over a pH range from 1.3 to 8.6 was studied. Ionized basic compounds showed increased retention with a decrease of the mobile phase pH. This increase in retention was attributed to the interaction with counter anions of the acidic modifiers. The increase in retention is dependent on the nature of the counter anion and its concentration in the mobile phase. It was shown that altering the concentration of counter anion of the acidic modifier allows the optimization of the selectivity between basic compounds as well as for neutral and acidic compounds.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号