首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 157 毫秒
1.
《Comptes Rendus Chimie》2015,18(8):816-822
The treatment of [PdL3(NH3)]OTf (L3 = (PEt3)2(Ph) (1), (2,6-(Cy2PCH2)2C6H3) (3)) with NaNH2 in THF afforded dimeric and monomeric parent-amido palladium(II) complexes with bridging and terminal NH2, respectively, anti-[Pd(PEt3)(Ph)(μ-NH2)]2 (2) and Pd(2,6-(Cy2PCH2)2C6H3)(NH2) (4). The dimeric complex 2 crystallizes in the space group P21/n with a = 13.228(2) Å, b = 18.132(2) Å, c = 24.745(2) Å, β = 101.41(1)°, and Z = 4. It has been found that there are two crystallographically independent molecules with Pd(1)–Pd(2) and Pd(3)–Pd(4) distances of 2.9594 (10) and 2.9401(9) Å, respectively. The monomeric amido complex 4 protonates from trace amounts of water to give the cationic ammine species [Pd(2,6-(Cy2PCH2)2C6H3)(NH3)]+. Complex 4 reacts with diphenyliodonium triflate ([Ph2I]OTf) to give aniline complex [Pd(2,6-(Cy2PCH2)2C6H3)(NH2Ph)]OTf (5). Reaction of 4 with dialkyl acetylenedicarboxylate (DMAD, DEAD) yields diastereospecific palladium(II) vinyl derivative (Z)–(Pd(Cy2PCH2)2C6H3)(CR = CR(NH2)) (R = CO2Me (6a), CO2Et (6b)). Reacting complexes 6a and 6b with p-nitrophenol produces (Pd(Cy2PCH2)2C6H3)(OC6H4p-NO2) (8) and cis-CHR = CR(NH2), exclusively.  相似文献   

2.
The reaction of RuTp(COD)Cl (1) with PR3 (PR3 = PPh2iPr, PiPr3, PPh3) and propargylic alcohols HCCCPh2OH, HCCCFc2OH (Fc = ferrocenyl), and HCCC(Ph)MeOH has been studied.In the case of PR3 = PPh2iPr, PiPr3 and HCCCPh2OH, the 3-hydroxyvinylidene complexes RuTp(PPh2iPr)(CCHC(Ph)2OH)Cl (2a) and RuTp(PiPr3)(CCHC(Ph2)OH)Cl (2b) were isolated.With PR3 = PPh2iPr and HCCCFc2OH as well as with PR3 = PPh3 and HCCCPh2OH dehydration takes place affording the allenylidene complexes RuTp(PPh2iPr)(CCCFc2)Cl (3b) and RuTp(PPh3)(CCCPh2)Cl (3c).Similarly, with PPh2iPr and HCCC(Ph)MeOH rapid elimination of water results in the formation of the vinylvinylidene complex RuTp(PPh2iPr)(CCHC(Ph)CH2)Cl (4).In contrast to the reactions of the RuTp(PR3)Cl fragment with propargylic alcohols, with HCC(CH2)nOH (n = 2, 3, 4, 5) six-, and seven-membered cyclic oxycarbene complexes RuTp(PR3)(C4H6O)Cl (5), RuTp(PR3)(C5H8O)Cl (6), and RuTp(PR3)(C6H10O)Cl (7) are obtained. On the other hand, with 1-ethynylcyclohexanol the vinylvinylidene complex RuTp(PPh2iPr)(CCHC6H9)Cl (8) is formed. The reaction of the allenylidene complexes 3ac with acid has been investigated. Addition of CF3COOH to a solution of 3ac resulted in the reversible formation of the novel RuTp vinylcarbyne complexes [RuTp(PPh2iPr)(C–CHCPh2)Cl]+ (9a), [RuTp(PPh2iPr)(C–CHCFc2)Cl]+ (9b), and [RuTp(PPh3)(C–CHCPh2)Cl]+ (9c). The structures of 3a, 3b, and 5b have been determined by X-ray crystallography.  相似文献   

3.
The syntheses of [Au(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(PPh3)] (3), trans-[Ru(CC-4-C6H4-CC-4-C6H4NN-4-C6H4NO2)Cl(dppm)2] (4), [Ru(CC-4-C6H4CC-4-C6H4NN-4-C6H4NO2)(dppe)(η-C5Me5)] (5), and [Ni(CC-4-C6H4NN-4-C6H4NO2)(PPh3)(η-C5H5)] (6) are reported, together with a single-crystal X-ray diffraction study of 4. Quadratic nonlinearities for 36 and [Ru(CC-4-C6H4NO2)(dppe)(η-C5Me5)] (7) have been determined at 1.064 μm and 1.300 μm by the hyper-Rayleigh scattering (HRS) technique, comparison to related complexes revealing that β values increase on introduction of azo group and π-system lengthening.  相似文献   

4.
Pentacarbonyl dimethylamino(methoxy)allenylidene complexes of chromium and tungsten, [(CO)5MCCC(NMe2)OMe] (M = Cr (1a), W (1b)), react with 1,3-bidentate nucleophiles such as amidines and guanidine, H2N–C(NH)R (R = Ph, C6H4NH2-4, C6H4NO2-3, NH2), by displacing the methoxy substituent to give exclusively dimethylamino(imino)-allenylidene complexes, [(CO)5MCCC{NC(NH2)R}NMe2] (2a5a, 2b). Treatment of the chromium complexes 2a5a with catalytic amounts of hydrochloric acid or HBF4 gives rise to an intramolecular cyclization. Addition of the terminal NH2 substituent to the Cα–Cβ bond of the allenylidene chain affords pyrimidinylidene complexes 69 in high yield. In contrast to the chromium complexes 2a5a, the corresponding tungsten complex 2b could not be induced to cyclize due to the lower electrophilicity of the α-carbon atom in 2b. The dimethylamino(phenyl)allenylidene complex [(CO)5CrCCC(NMe2)Ph] (10) reacts with benzamidine or guanidine similarly to 1a. However, the second reaction step – cyclization to give pyrimidinylidene complexes – proceeds much faster. Therefore, the formation of an imino(phenyl)allenylidene complex as an intermediate is established only by IR spectroscopy. The analogous reaction of 10 with 3-amino-5-methylpyrazole affords, via a formal [3+3]-cycloaddition, a pyrazolo[1,5a]pyrimidinylidene complex 13. Compound 13 is obtained as two isomers differing in the relative position of the N-bound proton (1H or 4H). The related reaction of 10 with thioacetamide yields a thiazinylidene complex and additionally an alkenyl(amino)carbene complex.  相似文献   

5.
《Comptes Rendus Chimie》2016,19(3):320-332
1,3-dipolar cycloaddition of diaryldiazomethanes Ar2CN2 across Cl3C–CHN–CO2Et 1 yields Δ3-1,2,4-triazolines 2. Thermolysis of 2 leads, via transient azomethine ylides 3, to diaryldichloroazabutadienes [Ar(Ar')CN–CHCCl2] 4. Treatment of 4a (Ar = Ar' = C6H5) and 4c (Ar = Ar' = p-ClC6H4) with NaSR in DMF yields 2-azabutadienes [Ar2CN–C(H)C(SR)2] 5. In contrast, nucleophilic attack of NaStBu on 4 affords azadienic dithioethers [Ar2CN–C(StBu)C(H)(StBu)] (7a Ar = C6H5; 7b Ar' = p-ClC6H4). The reaction of 4a with NaSEt conducted in neat EtSH produces [Ph2CN–C(H)(SEt)–CCl2H] 8, which after dehydrochloration by NaOMe and subsequent addition of NaSEt is converted to [Ph2CN–C(SEt)C(H)(SEt)] 7c. Upon the reaction of 4c with NaSiPr, the intermediate dithioether [(p-ClC6H4)2CN–CHC(SiPr)2] 5k is converted to tetrakisthioether [(p-iPrSC6H4)2CN–CHC(SiPr)2] 6. Treatment of 4a with the sodium salt of piperidine leads to [Ph2CN–CHC(NC5H10)2] 10. The coordination of 6 on CuBr affords the macrocyclic dinuclear Cu(I) complex 11. The crystal structures of 5i, 7a,b, 10 and 11 have been determined by X-ray diffraction.  相似文献   

6.
The binuclear transition metal dialkynyl bridged Pd(II) complexes trans,trans-[ClPd(PBu3)2–CC–C6H4–C6H4–CC–Pd(PBu3)2Cl] and trans,trans-[CH3OC–S–Pd(PBu3)2–CC–C6H4–C6H4–CC–Pd(PBu3)2–S–COCH3] were synthesized and investigated by X-ray Photoemission (XPS) and X-ray Absorption (XAS) spectroscopies. XPS measurements lead to assess that the thiolate terminal group does not affect dramatically the electronic structure of the transition metal, and as a consequence the two complexes are expected to possess analogous molecular structure. XAS data analysis suggested a square-planar geometry around the palladium center in both binuclear compounds.  相似文献   

7.
A modified ap ligand, 2-(3,5-dimethoxyanilino)pyridine (HDiMeOap) and its diruthenium compounds Ru2(DiMeOap)4Cl (1), Ru2(DiMeOap)4(CCCCSiMe3) (2) and Ru2(DiMeOap)4(CCCCSiMe3)2 (3) were prepared and characterized. New compounds Ru2(MeOap)4(CCCCSiMe3)x (x = 1, 4; 2, 5; MeOap is 2-(3-methoxyanilino)pyridinate) were prepared from the previously reported Ru2(MeOap)4Cl. In addition, two related diruthenium compounds containing ferrocenyl acetylide ligand, Ru2(MeOap)4(CCFc) (6) and Ru2(ap)4(CCCCFc) (7), were synthesized. Molecular structures of compounds 1, 2, 6 and 7 were established using single crystal X-ray diffraction study.  相似文献   

8.
The novel thiophenolato hydrido iron(II) complexes [cis-Fe(H)(SAr)(PMe3)4] (46) (Ar = p-BrC6H4 (4), p-MeOC6H4 (5) and o-MeC6H4 (6)) were prepared through the reaction of Fe(PMe3)4 with thiophenols ArSH (13). Reaction of 6 with trimethylsilylacetylene and phenylacetylene afforded bisalkynyl iron(II) complexes [Fe(PMe3)4(CCSiMe3)2] (7) and [Fe(PMe3)4(CCPh)2] (9) through elimination of dihydrogen and the formation of thiophenol. The reaction of 5 with 2-methyl-3-butyn-2-ol gave [Fe(PMe3)4(CCCMe2OH)2] (10). The crystal structures of complexes 4, 7 and 10 were determined by X-ray diffraction. A mechanism for the formation of 7 is proposed.  相似文献   

9.
《Polyhedron》2005,24(3):391-396
The reaction of [(η5-C5Me5)Ru(PPh3)2Cl] (1) with acetonitrile in the presence of excess NH4PF6 leads to the formation of the cationic ruthenium(II) complex [(η5-C5Me5)Ru(PPh3)2(CH3CN)]PF6 (2). The complex (2) reacts with a series of N,N′ donor Schiff base ligands viz. para-substituted N-(pyrid-2-ylmethylene)-phenylamines (ppa) in methanol to yield pentamethylcylopentadienyl ruthenium(II) Schiff base complexes of the formulation [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-X)]PF6 [3a]PF6–[3f]PF6, where C5Me5 = pentamethylcylopentadienyl, X = H, [3a]PF6, Me, [3b]PF6, OMe, [3c]PF6, NO2, [3d]PF6, Cl, [3e]PF6, COOH, [3f]PF6. The complexes were isolated as their hexafluorophosphate salts. The complexes were fully characterized on the basis of elemental analyses and NMR spectroscopy. The molecular structure of a representative complex, [(η5-C5Me5)Ru(PPh3)(C5H4N-2-CHN-C6H4-p-Cl)]PF6 [3e]PF6, has been established by X-ray crystallography.  相似文献   

10.
Incorporation of H2O or HCl on treatment of trimethylsilylalkynyl nitrosylruthenium TpRuCl(CCSiMe3)(NO) (1) (Tp = hydrotris(pyrazolyl)borate) with protic acid, and the dependence of its product formation on the reaction solvents, are reported. Reactions of 1 with HBF4 or HCl (aq.) in MeOH gave rise to the mixture of the mono(ethynyl) TpRuCl(CCH)(NO) (2) and the mono(acyl) TpRuCl{C(O)CH3}(NO) (3). The H2O-incorporated 3 was quantitatively obtained from the reactions of 2 with HCl (aq.) in MeOH. On the other hand, reactions of 1 with HCl (aq.) in CH2Cl2 gave the η1-α-chlorovinyl TpRuCl{C(Cl)CH2}(NO) (4). In the bis(alkynyl) system TpRu(CCSiMe3)2(NO) (5), the similar reactivities were observed. Proton-assisted hydration of 5 afforded the bis(acyl) TpRu{C(O)CH3}2(NO) (6), while the HCl-treatment led to the formation of the bis(α-chlorovinyl) TpRu{C(Cl)CH2}2(NO) (7).  相似文献   

11.
Treatment of the complex [Ru{C(CCPh)CHPh}Cl(CO)(PPh3)2] (1) with one equivalent of CNR(R =tBu, C6H3Me2-2,6) gives [Ru{C(CCPh)CHPh}Cl(CNR)(CO)(PPh3)2]. Addition of a further equivalent of isonitrile and [NH4]PF6 leads to the salts [Ru{C(CCPh)CHPh}Cl(CNR)2(CO)(PPh3)2]PF6 and the mixed species [Ru{C(CCPh) CHPh}(CO)(CNtBu)(CNC6H3Me2-2,6)(PPh3)2]PF6. The related [Ru{C(CCPh)CHPh}(CNt(CO)2  相似文献   

12.
The halide and phosphine free complex [(sIMes)(C5H4N-2-CO2)2RuCHPh] (7) (sIMes = 1,3-dimesitylimidazolidin-2-ylidene) bearing two bidentate 2-pyridinecarboxylato ligands was synthesized from the carbene complex [(sIMes)(PCy3)(Cl)2RuCHPh] (4) and the silver 2-pyridine-carboxylate (8). The molecular structure of the octahedral complex 7 reveals that the two carboxylato functions are coordinated in cis geometry to the ruthenium center. Catalyst 7 exhibits activity in ring-closing metathesis (RCM) reactions after addition of a cocatalyst (HCl) in dichloromethane as well as in methanol solution.  相似文献   

13.
Various (adamantylimido)vanadium(V) dialkyl complexes containing aryloxo ligands, V(NAd)(CH2SiMe3)2(OAr) [Ad = 1-adamantyl (1); Ar = Ph (a), 4-FC6H4 (b), 2,6-F2C6H3 (c), 2,6-Me2C6H3 (d), C6F5 (e)], have been prepared and identified. These complexes were employed as the catalyst precursors for ring-opening metathesis polymerization (ROMP) of norbornene (NBE) in the presence of PMe3 at 80 °C. The activity was strongly affected by the aryloxo substituent and increased in the order: C6H5 < 4-FC6H4 < 2,6-Me2C6H3 << 2,6-F2C6H3, C6F5. The same trend was observed in the ROMPs by the arylimido-aryloxo analogues, V(NAr′)(CH2SiMe3)2(OAr) (2a-e; Ar′ = 2,6-Me2C6H3), under the same conditions, and the activities by the arylimido analogues were generally higher than the adamantylimido analogues in most case. The (imido)vanadium(V) complexes containing O-2,6-F2C6H3 (1,2c) or OC6F5 (1,2e) exhibited high catalytic activities, and these results strongly suggest that electronic as well as steric factors play a role. Living ring-opening polymerization of THF proceeded in the presence of V(NAd) (CH2SiMe3)(OAr)2 (Ar = 2,6-Me2C6H3, C6F5) and [Ph3C][B(C6F5)4], affording high molecular weight polymers with narrow molecular weight distributions (ex. Mn = 2.11 × 105, Mw/Mn = 1.18).  相似文献   

14.
The RuC bond of the bis(iminophosphorano)methandiide-based ruthenium(II) carbene complexes [Ru(η6-p-cymene)(κ2-C,N-C[P{NP(O)(OR)2}Ph2]2)] (R = Et (1), Ph (2)) undergoes a C–C coupling process with isocyanides to afford ketenimine derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNR′)[P{NP(O)(OR)2}Ph2]2)] (R = Et, R′ = Bz (3a), 2,6-C6H3Me2 (3b), Cy (3c); R = Ph, R′ = Bz (4a), 2,6-C6H3Me2 (4b), Cy (4c)). Compounds 34ac represent the first examples of ketenimine–ruthenium complexes reported to date. Protonation of 34a with HBF4 · Et2O takes place selectively at the ketenimine nitrogen atom yielding the cationic derivatives [Ru(η6-p-cymene)(κ3-C,C,N-C(CNHBz)[P{NP(O)(OR)2}Ph2]2)][BF4] (R = Et (5a), Ph (6a)).  相似文献   

15.
《Polyhedron》2007,26(5):981-988
New π-conjugated butadiynyl ligand FcC(CH3)2Fc′–CC–CC–Ph (L1) has been synthesized and its reaction with Co2(CO)8 has been studied. New clusters [FcC(CH3)2Fc′–CC–CC–Ph][Co2(CO)6]n [(1): n = 1; (2): n = 2] and [Fc–CC–CC–Ph][Co2(CO)6]n [(3): n =  1; (4): n = 2] were obtained by the reaction of ligands FcC(CH3)2Fc′–CC–CC–Ph (L1) and Fc–CC–CC–Ph (L2) with Co2(CO)8 respectively and the composition and structure of the clusters and ligands have been characterized by elemental analysis, FTIR, 1H and 13C NMR and MS. The crystal structures of compounds L1, L2, 2 and 4 have been determined by X-ray single crystal analysis.  相似文献   

16.
The synthesis of the new cationic functionalized phosphane niobocene complexes [Nb(η5-C5H4SiMe3)2(P(CH2CO(C6H5))Ph2)(L)]Cl, LCO (3) or CNXylyl (4), and new phosphamido-niobocene complexes [Nb(η5-C5H4SiMe3)2(P{CO(C6H5)}Ph2)(L)]Cl, LCO (5), CNXylyl (6), [Nb(η5-C5H4SiMe3)2(P(COCH(C6H5)2)Ph2)(L)]Cl, LCO (7) or CNXylyl (8), has been achieved. The complexes were prepared by reaction of the Lewis base niobocene complexes [Nb(η5-C5H4SiMe3)2(PPh2)(L)], LCO (1) or CNXylyl (2), with the appropriate RX (PhCOCH2Cl, chloroacetophenone) and RCOX (PhCOCl, benzoyl chloride, Ph2CHCOCl, diphenylacetyl chloride) reagents through the formation of new P–C bonds in the corresponding nucleophilic substitution reactions. These processes afforded new metallophosphanes in which one of the substituents on the phosphorus atom contains a ketonic moiety. The presence of the carbonyl group in the coordination sphere of phosphorus increases the coordination possibilities of the phosphane and enriches the applications of these complexes.  相似文献   

17.
《Tetrahedron: Asymmetry》2017,28(4):545-549
(Z)-3-XCH2-4-(C6H5)-3-buten-2-one enones (X = SCN, N3, SO2Me, OC6H5) were synthesized and submitted to biotransformations using whole Saccharomyces cerevisiae cells. The enone (X = SCN) produced (R)-4-(phenyl)-3-methylbutan-2-one (R)-6 with 93% ee and enones (X = N3, SO2Me, OC6H5) yielded a mixture of (R)-6 and the corresponding CC bond reduction products. Biotransformation with enone (X = N3) mediated by Saccharomyces cerevisiae resulted in two products via two different routes: (i) the ketone (R)-4-azido-3-benzylbutan-2-one in 28% yield and with >99% ee by CC bond reduction; (ii) ketone (R)-6 in 51% yield and with 95% ee via cascade reactions beginning with azido group displacement by the formal hydride from flavin mononucleotide in an SN2′ type reaction followed by reduction of the newly formed CC bond.  相似文献   

18.
The preparation of novel Rh (I) and Ir (I) complexes, i.e. [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[PF6] (1), Rh(CF3SO3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (2) and Ir(CF3CO2)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (3) (COD = 1,5-cyclooctadiene), is described. Compounds 1 and 3 were structurally characterized by X-ray diffraction. In 1, the N-heterocyclic carbene acts as a bidentate ligand with the carbene coordinating to the Rh(I) center and an arene group acting as a homoazallyl ligand. The catalytic activity of complexes 13 in the polymerization of phenylacetylene was studied and compared to that of RhCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (4), Rh(CF3COO)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (5), [Rh(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD)]+[BF4] (6), IrCl(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (7), IrCl(1,3-diisopropyl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(COD) (8), IrBr(1,3-di-2-propylimidazolin-2-ylidene)(COD) (9), RuCl2(PCy3)(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH–C6H5) (10), RuCl2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (11), Ru(CO2CF3)2(1,3-dimesityl-3,4,5,6-tetrahydropyrimidin-2-ylidene)(CH-2-(2-PrO)-5-NO2-C6H3) (12). Compounds 16 were active in the polymerization of phenylacetylene. cis-Poly(phenylacetylene) (PPA) was obtained with the rhodium-based catalysts 1, 2, 46, trans-PPA was obtained with the Ir-based catalysts 3 and 8. In addition, compounds 1 and 6 were found to produce highly stereoregular PPA with a cis-content of 100% in the presence of water. Finally, the Ru-based metathesis initiator 12 allowed for the synthesis of trans-PPA, representing the first example of a ruthenium complex being active in the polymerization of a terminal alkyne.  相似文献   

19.
A novel organic–inorganic hybrid material, C6H15N2CdCl3.H2O, was synthesized, and its structure was determined at room temperature in the monoclinic space group P21/n with the following parameters: a = 10.3829 (17), b = 7.7459 (12), c = 14.905 (2) Å, β = 98.801 (15), and Z = 4. Its crystal structure is characterized by one-dimensional polymeric chains of edge-sharing CdCl5N distorted octahedra. These chains are linked to the water molecules via OH … Cl hydrogen bonds to form layers parallel to the (b, a + c) plane. The crystal structure was stabilized by an extensive network of NH … Cl, OH … Cl and NH … O hydrogen bonds. The differential scanning calorimetry (DSC) reveals that the title compound is stable until 101.6 °C.The optimized geometry parameters, normal mode frequencies, and corresponding vibrational assignments of the present compound were theoretically examined by DFT/B3LYP method with the Lanl2dz basis set. The FT-IR spectrum of the polycrystalline sample was examined and compared to the calculated spectrum. The calculated results showed that the optimized geometry could well reproduce the crystal structure and that the theoretical vibrational frequency values were in good agreement with their experimental counterparts.  相似文献   

20.
The synthesis and structural study of three new AII(SbV0.5FeIII0.5)(PO4)2 (ABa, Sr, Pb) phosphates belonging to the ASbFePO system were reported here for the first time. Structures of [Ba], [Sr] and [Pb] compounds, obtained by solid state reaction in air atmosphere, were determined at room temperature from X-ray powder diffraction using the Rietveld method. BaII(SbV0.5FeIII0.5)(PO4)2 features the yavapaiite-type structure, with space group C2/m, Z = 2 and a = 8.1568(4) Å; b = 5.1996(3) Å c = 7.8290(4) Å; β = 94.53(1)°. AII(SbV0.5FeIII0.5)(PO4)2 (ASr, Pb) compounds have a distorted yavapaiite structure with space group C2/c, Z = 4 and a = 16.5215(2) Å; b = 5.1891(1) Å c = 8.0489(1) Å; β = 115.70(1)° for [Sr]; a = 16.6925(2) Å; b = 5.1832(1) Å c = 8.1215(1) Å; β = 115.03(1)° for [Pb]. Raman and Infrared spectroscopic study was used to obtain further structural information about the nature of bonding in selected compositions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号