首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 48 毫秒
1.
Gold nanoparticles were deposited electrolessly on multiwalled carbon nanotubes (CNTs) via in situ reduction of HAuCl4 by NaBH4. The resulting gold covered nanotubes were immobilised onto the surface of a glassy carbon electrode via evaporation of a suspension in chloroform. Anodic stripping voltammetry was performed with the modified electrode in As(III) solutions. A limit of detection (LOD based on 3σ) of 0.1 μg L−1 was obtained but more importantly a sensitivity of 1985 μA μM−1 was obtained with square wave voltammetry (SWV) in an optimised system with a deposition time of 120 s. These values, particularly the high sensitivity compare favourably with previously reported methods in the area of electrochemical arsenic detection.  相似文献   

2.
Analytical previous results corresponding to square-wave voltammetry (SWV) and square-wave voltacoulommetry (SWVC) have been applied to the electrochemical characterization of myoglobin immobilized at a self-assembled monolayer of l-cystine on a gold electrode and its electrocatalytic activity towards the oxidation of sodium ascorbate. The obtained results have been compared with those previously reported in Langmuir (2011) 27:2052–2057 by using cyclic voltammetry. It has been shown that double layer effects can be easily removed in SWV and SWVC techniques. Accurate values for the thermodynamic and electrochemical kinetic parameters have been obtained by assuming dispersion in the formal potential of the redox center, and a value k c ′?=?1.37?×?105?M?1?s?1 has been found for the catalytic constant.  相似文献   

3.
An electrochemical study of the anthelmintic drug bithionol using edge plane pyrolytic graphite electrode (EPPGE) is presented for the first time by applying different electrochemical techniques, such as cyclic voltammetry (CV), square‐wave voltammetry (SWV), square‐wave adsorptive stripping voltammetry (SWAdSV), and alternating current (AC) impedance spectroscopy. Mechanistic aspects of the electrode reaction were studied implying a quasireversible electrode reaction from an adsorbed state of the reactant, coupled with a follow‐up chemical reaction to a final electroinactive product. The overall mechanism appears totally irreversible under conditions of CV at moderate scan rate, while being quasireversible under conditions of the fast SWV. Furthermore, an optimisation of the analytical procedure for quantitative determination of bithionol was conducted by applying SWV in an adsorptive stripping mode. The calibration curve was constructed in the concentration range of 0.1–1.0 μmol L?1 (R2=0.9984) with a sensitivity of 3.6 μA L μmol?1 and LOD of 26.7 nmol L?1. The simple and sensitive SWAdSV procedure was proved to be suitable for the analysis of spiked urine samples.  相似文献   

4.
对于碱性燃料电池的阴极反应,开发具有优异催化性能的新型催化剂至关重要.本工作采用一种简单的热解方法合成了硼、氮掺杂的二硫化钼(B,N-MoS2)材料并将其应用于氧还原(ORR)电催化分析.通过循环伏安法(CV)与线性扫描伏安法(LSV)等电化学分析方法,采用旋转盘电极(RDE)与旋转环盘电极(RRDE)等技术测试了该材...  相似文献   

5.
Electrochemical oxidation of methylparaben (MP) is studied on an overoxidized polypyrrole (OPPy)-modified boron-doped diamond electrode using the cyclic voltammetry (CV) and square wave voltammetry (SWV) techniques. The OPPy-modified BDD electrode displays the catalytic activity of electrooxidation of methylparaben. The modification of BDD electrode surface results in higher values of recorded oxidation currents of the methylparaben than on a bare BDD electrode. The diffusion character of recorded current is determined on the basis of the relation between the current and the scan rate. The linear relationship between methylparaben oxidation peak current is obtained in the range 1.57?×?10??6–2.06?×?10??5 mol L??1. A new voltammetric procedure is proposed to quantify methylparaben in cosmetic products using an overoxidized polypyrrole (OPPy)-modified BDD electrode. The results are compared to the HPLC technique described in the literature as the reference method.  相似文献   

6.
Designing an electrochemical sensor for versatile clinical applications is a sophisticated task and how dedicatedly functionalized composite materials can perform on this stage is a challenge for today and tomorrow's Nanoscience and Nanotechnology. In the present work, we demonstrate a new strategy for the development of novel electrochemical sensor based on catalytic nanocomposite film. Fullerene-C60 and multi-walled carbon nanotubes (MWCNTs) were dropped on the pre-treated carbon paste electrode (CPE) and copper nanoparticles (CuNPs) electrochemically deposited on the modified CPE to form nanocomposite film of CuNPs/C60/MWCNTs/CPE. In this work, an electrochemical method based on square wave voltammetry (SWV) employing CuNPs/C60/MWCNTs/CPE has been presented for the recognition and determination of paracetamol (PT). Developed electrochemical sensor was characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), and chronocoulometry. The composite film made the fabricated sensor to display high sensitivity and good selectivity for PT detection. The influence of the optimization parameters such as pH, accumulation time, deposition potential, scan rate and effect of loading of composite mixture of C60-MWCNTs and CuNPs on the electrochemical performance of the sensor were evaluated. A linear range from 4.0 × 10−9 to 4.0 × 10−7 M for PT detection was obtained with a detection limit of 7.3 × 10−11 M. The fabricated sensor was successfully applied to the detection of PT in biological samples with good recovery ranging from 99.21 to 103%.  相似文献   

7.
A carbon paste electrode, modified with 2, 2′-[1,7-hepthandiylbis(nitriloethylidyne)]-bis-hydroquinone and TiO2 nanoparticles, was used for the simultaneous determination of dopamine (DA), uric acid (UA), and l-cysteine. The study was carried out by using cyclic voltammetry, chronoamperometry, and square wave voltammetry (SWV) techniques. Some kinetic parameters such as the electron transfer coefficient (α) and heterogeneous rate constant (ks) were also determined for the DA oxidation. A dynamic range of 8.0–1400 μM, with the detection limit of 8.4 × 10−7 M for DA, was obtained using SWV (pH = 7.0). The prepared electrode was successfully applied for the determination of DA, UA, and l-cysteine in real samples.  相似文献   

8.
Accurate detection of cancer antigen 72-4 (CA72-4), a tumor-associated glycoprotein, is of great significance for gastric cancer diagnosis and immunotherapy monitoring. Modification of noble metal nanoparticles on transition metal dichalcogenides can significantly enhance functions, such as electron transport. Molybdenum disulfide gold nanoparticles nanocomposites (MoS2-Au NPs) were prepared in this study and a series of characterization studies were carried out. In addition, a label-free, highly sensitive electrochemical immunosensor molybdenum disulfide -Au nanoparticles/Glassy carbon electrode (MoS2-Au NPs/GCE) was also prepared and used for the detection of CA72-4. The electrochemical performance of the immunosensor was characterized by electrochemical techniques, such as cyclic voltammetry (CV), differential pulse voltammetry (DPV), and electrochemical impedance spectroscopy (EIS). The results indicated that better MoS2-Au NPs nanomaterials have been synthesized, and the prepared electrochemical immunosensor, MoS2-Au NPs/GCE, showed excellent electrochemical performance. The sensor exhibited high detection sensitivity under optimal conditions, including an incubation time of 30 min, an incubation temperature of 25 °C, and a pH of 7.0. The electrochemical immunosensor also had a low detection limit of 2.0 × 10?5 U/mL (S/N = 3) in a concentration range of 0.001–200 U/mL, with good selectivity, stability, and repeatability. In conclusion, this study provided a theoretical basis for the highly sensitive detection of tumor markers in clinical biological samples.  相似文献   

9.
The electrochemical behavior of dopamine (DA) at a MWNTs-modified glassy carbon electrode was investigated by cyclic voltammetry (CV), square wave voltammetry (SWV). The MWNTs modified electrode exhibited marked promotion of the electrochemical reaction of DA in different environments. Under optimum conditions, the peak currents of SWV of DA were increased linearly with incremental concentration of DA in the range from 5 × 10?7 to 1 × 10?5 mol L?1. The limit of detection is 3 × 10?7 mol L?1.  相似文献   

10.
A label-free electrochemical immunosensor was developed for the ultra-sensitive detection of β-lactoglobulin (β-LG). The novel nanocomplex of carbon nanochips, colloidal gold nanoparticles and titanium dioxide nanoparticles TiO2/CNC/AuC were constructed on conducting polymer, chitosan, and were characterised using scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). This nanocomplex interface was studied using cyclic voltammetry (CV) and showed great improvement at the gold electrode surface with enhanced electrochemical performance, sensitivity and selectivity for β-lactoglobulin. Under optimal parameters, the square wave voltammetry (SWV) response curve was determined from 0.01 pg/mL to 500 pg/mL using [Fe(CN)6]3−/4−] redox probe. The calibration plot illustrates a linear relationship between log β-LG concentration and SWV current, with the limit of detection determined to be 0.01 pg/mL. This immunosensor displayed high sensitivity, selectivity, reproducibility and stability, and can be utilised for the detection of β-LG in real food samples.  相似文献   

11.
A sensitive square-wave voltammetry (SWV) method based on basal-plane pyrolytic graphite electrode (BPPGE) and edge-plane pyrolytic graphite electrode (EPPGE) was developed to determine the concentration of the pesticide mandipropamid (MAN) in spiked river water and grape juice samples. Under optimal experimental conditions, the SWV response of EPPGE and BPPGE was linear over the concentration ranges of 0.7 to 9.0 μmol L−1 and 0.5 to 10.0 μmol L−1, respectively. The method was successfully used to determine MAN in spiked samples with good recovery. Cyclic voltammetry (CV) was conducted to understand the mechanism underlying the electrode process of MAN.  相似文献   

12.
Nanoporous gold (NPG) with uniform pore sizes and ligaments was prepared by a simple dealloying method. The as-prepared NPG samples were used as the working electrodes to investigate the redox behavior of p-nitrophenol (p-NP) by cyclic voltammetry (CV). Quite different from the voltammetric behavior of polycrystalline gold electrode, the CV profiles of NPG display a pair of nearly symmetric redox waves which are ascribed to the reaction of 4-(hydroxyamino)phenol/4-nitrosophenol couple. It is interesting that this pair of redox waves are hardly affected by the isomers of p-NP; and moreover, their peak areas are linear with the concentration of p-NP in the range from 0.25 to 10 mg dm?3. Because of high sensitivity and good selectivity, NPG is expected to act as a promising electrochemical sensor material for detecting trace p-NP in wastewaters.  相似文献   

13.
A glassy carbon electrode (GCE) was modified with electropolymerization of meso-tetrakis(2-aminophenyl)porphyrin (TAPP) in acetonitrile by cyclic voltammetry (CV). The voltammetric behavior of norepinephrine (NE) in the presence of excess ascorbic acid (AA) was investigated at the modified electrode by cyclic and square wave voltammetry (SWV) in phosphate buffer solution. The modified electrode gave higher selectivity and highly effective electroactivity to NE oxidation in voltammetric measurements of NE in the presence of AA and epinephrine. In pH 7.4 phosphate buffer solution, the peak current increased linearly with the concentration of NE in two concentration ranges of 1.0×10−6 to 5.0×10−5 mol dm−3.  相似文献   

14.
We report herein a simple device for rapid biosensing consisting of a single microfluidic channel made from poly(dimethylsiloxane) (PDMS) coupled to an injector, and incorporating a biocatalytic sensing electrode, reference and counter electrodes. The sensing electrode was a gold wire coated with 5 nm glutathione-decorated gold nanoparticles (AuNPs). Sensitive detection of H2O2 based on direct bioelectrocatalysis by horseradish peroxidase (HRP) was used for evaluation. HRP was covalently linked the glutathione–AuNPs. This electrode presented quasi-reversible cyclic voltammetry peaks at ?0.01 V vs. Ag/AgCl at pH 6.5 for the HRP heme FeIII/FeII couple. Direct electrochemical activity of HRP was used to detect H2O2 at high sensitivity with a detection limit of 5 nM in an unmediated system.  相似文献   

15.
Wang F  Zhao F  Zhang Y  Yang H  Ye B 《Talanta》2011,84(1):160-168
The present paper describes to modify a double stranded DNA-octadecylamine (ODA) Langmuir-Blodgett film on a glassy carbon electrode (GCE) surface to develop a voltammetric sensor for the detection of trace amounts of baicalein. The electrode was characterized by atomic force microscopy (AFM) and cyclic voltammetry (CV). Electrochemical behaviour of baicalein at the modified electrode had been investigated in pH 2.87 Britton-Robinson buffer solutions by CV and square wave voltammetry (SWV). Compared with bare GCE, the electrode presented an electrocatalytic redox for baicalein. Under the optimum conditions, the modified electrode showed a linear voltammetric response for the baicalein within a concentration range of 1.0 × 10−8-2.0 × 10−6 mol L−1, and a value of 6.0 × 10−9 mol L−1 was calculated for the detection limit. And the modified electrode exhibited an excellent immunity from epinephrine, dopamine, glucose and ascorbic acid interference. The method was also applied successfully to detect baicalein in the medicinal tablets and spiked human blood serum samples with satisfactory results.  相似文献   

16.
CeO2 nanoparticles approximately 12 nm in size were synthesized and subsequently characterized by XRD, TEM and UV-vis spectroscopy. Then, a gold electrode modified with CeO2 nanoparticles was constructed and characterized by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The modified electrode demonstrated strong catalytic effects with high stability towards electrochemical oxidation of rutin. The anodic peak currents (measured by differential pulse voltammetry) increased linearly with the concentration of rutin in the range of 5.0 × 10−7–5.0 × 10−4 mol · L−1. The detection limit (S/N = 3) was 2.0 × 10−7 mol · L−1. The relative standard deviation (RSD) of 8 successive scans was 3.7% for 5.0 × 10−6 mol · L−1 rutin. The method showed excellent sensitivity and stability, and the determination of rutin in tablets was satisfactory.  相似文献   

17.
A novel kind of nanocomposite, titanate nanotubes (TNTs) decorated by electroactive Prussian blue (PB), was fabricated by a simple chemical method. The as-prepared nanocomposite was characterized by XRD, XPS, TEM, FT-IR and Cyclic voltammetry (CV). Experimental results revealed that PB was adsorbed on the surface of TNTs, and the adsorption capacity of TNTs was stronger than that of anatase-type TiO2 powder (TNP). The PB-TNTs nanocomposite was modified onto a glassy carbon electrode and the electrode showed excellent electroactivity. The modified electrode also exhibited outstanding electrocatalytic activity towards the reduction of hydrogen peroxide and can serve as an amperometric sensor for H2O2 detection. The sensor fabricated by casting Nafion (NF) above the PB-TNTs composite film (NF/PB-TNTs/GCE) showed two linear ranges of 2 × 10?5–5 × 10?4 M and 2 × 10?3–7 × 10?3 M, with a detection limit of 1 × 10?6 M. Furthermore, PB-TNTs modified electrode with Nafion (NF/PB-TNTs/GCE) showed wider linear range and better stability compared with PB-TNTs modified electrode without Nafion (PB-TNTs/GCE) and PB modified electrode with Nafion (NF/PB/GCE).  相似文献   

18.
This work suggests a green method for synthesizing Au nanoparticles (AuNPs) using the aqueous extract of Salix aegyptiaca extract. The mechanism of green synthesized AuNPs was examined by molecular electrostatic potential (MEP) calculations. AuNPs were characterized with different techniques such as Ultraviolet–visible spectroscopy (UV–vis), Fourier-transform infrared spectroscopy (FT-IR) spectroscopy, X-ray diffraction (XRD), and Transmission electron microscopy (TEM). Electrochemical investigation of modified glassy carbon electrode using AuNPs (AuNPs/GCE) shows that the electronic transmission rate between the modified electrode and [Fe (CN)6]3?/4? increased. Process of oxidation, energy gap, and chemical reactivity indexes of the (+)-epicatechin (2S,3S) were investigated using electrochemical techniques (cyclic voltammetry (CV) and differential pulse voltammetry (DPV) as well as UV–Visible spectroscopy and compared with quantum mechanical calculations. DPV and CV were used to obtain HOMO energies of the (+)-epicatechin (2S,3S), an optical energy gap was obtained from the UV–Vis spectroscopy. Frontier molecular orbitals analysis (FMO) and reactivity indexes such as chemical hardness (?), electrophilicity (?), electronic chemical potential (μ), electron acceptor power (?+), electron donor power (??) were determined with functional theory (DFT) calculations. In summary, the HOMO energy obtained from the experimental analyses (EHOMO (from DPV) = -5.24 eV, and EHOMO (from CV) = -5.28 eV) has a relative agreement with the HOMO energy calculated by B3LYP/6–31 g (d, p) including the solvent effect (water) (EHOMO (from B3LYP) = -5.75 eV). Also, UV–Vis spectroscopy gives the bandgap energy equal to 4.31 eV, while the 4.13 eV is calculated by TD-DFT-b3lyp/6–31 + g(d).  相似文献   

19.
It is important to develop a catalyst that has high catalytic activity and can improve the degradation efficiency of refractory organic pollutants in the catalytic ozonation process. In this study, Fe-Mn-Cu-Ce/Al2O3 was synthesised via impregnation calcination for catalytic ozonation of bio-treated coking wastewater. The physical and chemical characteristics of the catalysts were analysed using X-ray diffraction (XRD), X-ray fluorescence spectrometry (XRF), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), and Brunauer–Emmett–Teller nitrogen adsorption–desorption methods. The effects of catalyst dosage, pH, and reflux ratio on the degradation efficiency of wastewater were examined in laboratory-scale experiments. The chemical oxygen demand (COD) removal rate of bio-treated coking wastewater was estimated to be 52.76 % under optimal conditions. The experiments on the catalytic mechanism demonstrated that the surface hydroxyl formed by the Lewis acid sites on the surface of the catalyst can react with ozone as the active site forming the active oxygen (·OH, ·O2, and 1O2), thereby efficiently degrading the organic pollutants in coking wastewater. Furthermore, a pilot-scale experiment on the catalytic ozonation of bio-treated coking wastewater was carried out using an Fe-Mn-Cu-Ce/Al2O3 catalyst, while the effects of the initial pollutant concentration, ozone concentration, and gas flow on the COD removal rate were studied on a pilot scale. It was found that the COD removal rate of the wastewater was ~ 60 % under optimal parameters. After the treatment, the wastewater steadily reached the coking wastewater discharge standard (COD < 80 mg/L), while the operating cost of catalytic ozonation reached ~ 0.032$/m3, thereby paving the way toward economic engineering applications. The COD degradation kinetics in the bio-treated coking wastewater followed pseudo-second-order kinetics. Three-dimensional fluorescence and gas chromatography–mass spectrometry revealed that macromolecular organic pollutants in the bio-treated coking wastewater were greatly degraded. In summary, Fe-Mn-Cu-Ce/Al2O3 exhibited good reusability, high catalytic activity, and low cost and has a wide application prospect in the treatment of coking wastewater.  相似文献   

20.
Based on the mechanism of 2,4,6-Trinitrotoluene (TNT) degradation, an amperometric hydrogen peroxide biosensor was constructed for the determination of trace amounts of TNT by immobilization of MWCNTs, HRP and Nafion onto the surface of glassy carbon electrode (GCE). The Nafion/MWCNTs/HRP biosensor was capable of degrading TNT with the consumption of H2O2 and HRP in 0.2 mol/L PBS (pH 7.0). Trace TNT was quantitative analyzed by the current decrease of H2O2 at the reductive potential of −0.35 V using cyclic voltammetry (CV). Effect of the ratio of MWCNTs/HRP, initial concentration of H2O2 and electrolyte’s pH were also optimized by CV. Under the optimal conditions, the current decrease of H2O2 that was consumed by TNT degradation was proportional to TNT ranging from 8.8 × 10−9 mol/L to 2.64 × 10−7 mol/L with a detection limit of 3.0 × 10−9 mol/L (S/N = 3). It developed a new way for simple, rapid and sensitive measurement of trace TNT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号