首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Analytical letters》2012,45(11):1821-1834
In recent years, considerable attention has been paid to developing economical yet rapid glucose sensors using graphene and its composites. Recently, the excellent properties of graphene and metal oxide nanoparticles have been combined to provide a new approach for highly sensitive glucose sensors. This review focuses on the development of graphene functionalized with different nanostructured metal oxides (such as copper oxide, zinc oxide, nickel oxide, titanium dioxide, iron oxide, cobalt oxide, and manganese dioxide) for use as glucose biosensors. Additionally, a brief introduction of the electrochemical principles of glucose biosensors (including amperometric, potentiometric, and conductometric) is presented. Finally, the current status and future prospects are outlined for graphene/metal oxide nanomaterials in glucose sensing.  相似文献   

2.
This article reviews and summarizes work recently performed in this laboratory on the synthesis of advanced transparent conducting oxide nanopowders by the use of plasma. The nanopowders thus synthesized include indium tin oxide (ITO), zinc oxide (ZnO) and tin-doped zinc oxide (TZO), aluminum-doped zinc oxide (AZO), and indium-doped zinc oxide (IZO). These oxides have excellent transparent conducting properties, among other useful characteristics. ZnO and TZO also has photocatalytic properties. The synthesis of these materials started with the selection of the suitable precursors, which were injected into a non-transferred thermal plasma and vaporized followed by vapor-phase reactions to form nanosized oxide particles. The products were analyzed by the use of various advanced instrumental analysis techniques, and their useful properties were tested by different appropriate methods. The thermal plasma process showed a considerable potential as an efficient technique for synthesizing oxide nanopowders. This process is also suitable for large scale production of nano-sized powders owing to the availability of high temperatures for volatilizing reactants rapidly, followed by vapor phase reactions and rapid quenching to yield nano-sized powder.  相似文献   

3.
A green approach is reported for the synthesis of cysteine-functionalized zinc oxide nanoparticles using potato extract as a nontoxic and economical reducing agent. The cysteine-functionalized nanoparticles were used as a support for enzyme immobilization. The structural morphology, crystallinity, and surface functionalization were characterized by scanning electron microscopy, X-ray diffraction, and infrared spectroscopy, respectively. Spherical nanoparticles from 150 to 200?nm were used to evaluate the immobilization efficiency for urease through covalent attachment on the glutaraldehyde-activated amino group of cysteine. In comparison to the unmodified nanoparticles, 62.9% enzyme loading with 72.45% of enzyme specific activity was recovered which was 56% higher than on bare zinc oxide nanoparticles. The point of addition of cysteine during the nanoparticle synthesis had a direct effect on the immobilization efficiency. The immobilized enzyme-specific activity was reduced to 34.32% when cysteine was added following the nanoparticle synthesis. With a facile synthesis procedure and significant immobilization efficiency, cysteine-functionalized zinc oxide nanoparticles were shown to be suitable for various clinical and industrial applications.  相似文献   

4.
Nanostructured zinc and zinc oxide films were prepared by magnetron sputtering processes and succeeded air annealing treatments. Comparison of reductive degradation rate of methyl orange (MO) by zinc films and photocatalytic degradation rate of MO by zinc oxide films was carried out. Both reductive degradation and photocatalytic degradation process of MO by zinc and zinc oxide films can be described by first order kinetic model. It was found that although MO liquid was most quickly decolorized by metallic zinc films, the mineraliza-tion of MO was not thorough. Observation of extra ultraviolet absorption peaks indicated the formation of aromatic intermediates. On the other hand, although the photocatalytic degradation rate of MO liquid by ZnO films was only as about 1/4 large as the reductive degradation rate by zinc films, no signs of aromatic intermediates were found. Moreover, it was found that partially oxidized zinc oxide film showed higher photocatalytic efficiency than the totally oxidized ZnO films. Synergy effect between zinc and zinc oxide phase in the partially oxidized films was considered to be responsible for the higher photocatalytic efficiency.  相似文献   

5.
The present study aims to investigate the interactions of zinc oxide nanoparticles and copper oxide nanoparticles with the major photosynthetic pigment chlorophyll using ultraviolet-visible, steady state, and time resolved laser induced fluorescence spectroscopy. The steady state fluorescence measurements show that zinc oxide and copper oxide nanoparticles quench the fluorescence of chlorophyll in concentration-dependent manner. The Stern-Volmer plot for the chlorophyll-zinc oxide nanoparticles is linear, and the value of quenching constant has been observed to increase with temperature indicating the possibility of dynamic quenching. A decrease in the lifetime of chlorophyll with increase in the concentration of zinc oxide nanoparticles confirms the involvement of dynamic quenching in the chlorophyll–zinc oxide nanoparticle interaction. In the case of copper oxide nanoparticles, the Stern-Volmer plot deviates from linearity observed in the form of upward curvature depicting the presence of both static and dynamic quenching. In addition, the lifetime of chlorophyll decreases with increase in the concentration of copper oxide nanoparticles displaying the dominance of dynamic quenching in the chlorophyll-copper oxide nanoparticle interaction. The decrease observed in the value of binding constant with increasing temperature and negative values of change in enthalpy, entropy, and Gibb’s free energy indicates that van der Waal and hydrogen bonding are the prominent forces during the interaction of chlorophyll with both zinc oxide and copper oxide nanoparticles and that the process is spontaneous and exothermic. The interaction of zinc oxide and copper oxide nanoparticles with chlorophyll occurs through electron transfer mechanism. The obtained results are useful in understanding the sensitization processes involving chlorophyll and zinc oxide and copper oxide nanoparticles.  相似文献   

6.
唐伟  王兢 《物理化学学报》2016,32(5):1087-1104
金属氧化物异质结由于费米能级效应、不同组分之间的协同作用,常被用来提高电阻型金属氧化物半导体气体传感器的气敏特性。本文简述了近年来国内外金属氧化物异质结材料的类别,主要分为混合氧化物结构、层状结构、第二相粒子修饰结构、一维纳米结构和核-壳结构;重点综述了金属氧化物异质结的气敏增强机理,包括异质结效应、协同效应、催化溢流效应、响应反型、载流子分离及微结构调控六大机理;分析了当前异质结气体传感器面临的瓶颈。最后对纳米异质结气体传感器的发展进行了展望,今后金属氧化物异质结气体传感器可以从明确异质结界面机理展开,这将为自下而上地设计出符合实际需要的气体传感器提供一定参考。  相似文献   

7.
氧化石墨烯荧光传感器   总被引:1,自引:0,他引:1  
张昊  崔华 《化学进展》2012,24(8):1554-1559
氧化石墨烯因其独特的光学、表面、机械、电学及热学性质在诸多领域都具有良好的应用前景。利用氧化石墨烯能够有效猝灭荧光体(染料分子、量子点及上转换纳米材料)荧光的特性,结合相关生物分析技术,相继开发了各种荧光传感器。本文综述近年来氧化石墨烯荧光传感器的基本原理及研究进展,主要讨论氧化石墨烯荧光传感器在重金属离子、DNA、蛋白质及生物小分子的分析应用,并对该领域的应用前景进行了展望。  相似文献   

8.
采用氯化铵-氨水体系溶解试样,干过滤后,向移取的滤液中加入氯化钡和硫酸共沉淀铅离子,过滤分离硫酸铅沉淀,向滤液中加人抗坏血酸、氟化钾、硫代硫酸钠等掩蔽剂掩蔽少量干扰元素。在pH=5~6的乙酸-乙酸钠缓冲溶液中,以二甲酚橙为指示剂,用EDTA标准滴定溶液滴定测得结果为氧化锌、水溶性锌和镉合量,扣除由原子吸收光谱法测得的水溶性锌量和镉量,即为氧化锌量。对总氨浓度、氯化铵-氨水浓度比、溶液加入量、搅拌时间、共存离子干扰、精密度等进行了实验,建立了EDTA滴定法测定含锌物料中氧化锌物相的分析方法。实验证明,氧化锌含量在24%~83%时,方法精密度(RSD)为0.25%~0.54%,加标回收率在99%~104%,完全满足含锌物料中氧化锌的测定要求。  相似文献   

9.
以氧化铟锡透明导电膜玻璃(ITO)做载体,先在室温下采用浸渍-提拉法制备出ZnO纳米晶作为种子层,再结合低成本的水热生长法合成了一维有序的ZnO纳米棒阵列.结合X射线衍射(XRD)、扫描电子显微镜(SEM)和能量色散谱仪(EDS)表征,研究了前驱液浓度、溶胶陈化时间、种子层提拉次数、水热生长时间和次数等5种因素对ZnO纳米棒的结构及形貌的影响.研究结果表明, ZnO纳米棒阵列的长度和直径会随着前驱液的浓度和溶胶陈化时间以及水热生长时间的延长而增加.当前驱液浓度为0.5 mol·L-1时,陈化时间为24 h,浸渍-提拉3次,水热反应3次,每次反应时间为150 min时,可得到一维有序的ZnO纳米棒阵列.  相似文献   

10.
The structure of polymer films modified with zinc oxide nanocrystals was studied by the optical absorption and small-angle X-ray scattering methods. Small-angle X-ray scattering allows determination of the nanoparticle size distribution function, which is the decisive factor in predicting the optical properties of heterophase materials, including filled polymer films. The optical absorption spectrum of an acrylate polymer film doped with 1.6 wt % zinc oxide nanocrystals approaches the ideal absorber spectrum, which allows this material to be recommended for use as a protective color filter.  相似文献   

11.
一氧化氮荧光分子探针   总被引:1,自引:0,他引:1  
张灯青  赵圣印  刘海雄 《化学进展》2008,20(9):1396-1405
一氧化氮(NO)在生物体中扮演重要的角色,对其选择性识别引起了人们极大的兴趣。本文综述了两类NO荧光分子探针的研究进展,即含金属离子的NO荧光分子探针:如Co(Ⅱ)、Fe(Ⅱ)、 Ru(Ⅱ)、Rh(Ⅱ)和Cu(Ⅱ)配合物作为荧光打开的NO分子探针;邻苯二胺类荧光分子探针:如2,3-二氨基萘(DAN)、二氨基荧光素衍生物(DAFs)、二氨基罗丹明衍生物(DARs)、硼二吡咯甲基衍生物(BODIPY)和三碳菁衍生物(DAC)等。  相似文献   

12.
The homogeneous dinuclear zinc catalyst going back to the work of Williams et al. is to date the most active catalyst for the copolymerisation of cyclohexene oxide and CO2 at one atmosphere of carbon dioxide. However, this catalyst shows no copolymer formation in the copolymerisation reaction of propylene oxide and carbon dioxide, instead only cyclic carbonate is found. This behaviour is known for many zinc‐based catalysts, although the reasons are still unidentified. Within our studies, we focus on the parameters that are responsible for this typical behaviour. A deactivation of the catalyst due to a reaction with propylene oxide turns out to be negligible. Furthermore, the catalyst still shows poly(cyclohexene carbonate) formation in the presence of cyclic propylene carbonate, but the catalyst activity is dramatically reduced. In terpolymerisation reactions of CO2 with different ratios of cyclohexene oxide to propylene oxide, no incorporation of propylene oxide can be detected, which can only be explained by a very fast back‐biting reaction. Kinetic investigations indicate a complex reaction network, which can be manifested by theoretical investigations. DFT calculations show that the ring strains of both epoxides are comparable and the kinetic barriers for the chain propagation even favour the poly(propylene carbonate) over the poly(cyclohexene carbonate) formation. Therefore, the crucial step in the copolymerisation of propylene oxide and carbon dioxide is the back‐biting reaction in the case of the studied zinc catalyst. The depolymerisation is several orders of magnitude faster for poly(propylene carbonate) than for poly(cyclohexene carbonate).  相似文献   

13.
The liquid precipitation method using zinc acetate dihydrate was applied for the synthesis of uniform and spherical ZnO nanoparticles. The ultrafine zinc oxid was prepared in a water‐ethanol mixture solution. The solution containing zinc cation was soluble in water. The surface‐active agent triethanolamine (TEA) was soluble in ethanol. Then alkali precipitated by adding n‐propylamine. The spherical zinc oxide particle morphology was found to be highly dependent on the zinc salt concentration, ethanol‐water ratio, and the surface‐active agent additive. The process can produce white ZnO powder of 50–90 nm in size. The morphology of zinc oxide showed a powder shape by transmission electron microscopy (TEM), the crystallization phase structure of zinc oxide by X‐ray diffraction (XRD), and the zinc oxide remaining by using an organic analysis by infrared spectroscopy (IR).  相似文献   

14.
The kinetics of the accumulation of zinc ions in a solution during the interaction between polyacrylic acid and an aqueous dispersion of zinc oxide is investigated. It is shown that the concentration of zinc ions in solution reaches its maximum within 1.5–5 min after the onset of the process, depending on the concentration of the acid and zinc oxide. The initial rate of a process and the maximum concentration of zinc ions in the solution depend on the initial concentration of reagents in the system. The dissolution rate of zinc oxide is affected by the flocculation of dispersion particles and the concentration of zinc ions in the solution. The adsorption isotherm of polyacrylic acid on zinc oxide particles is of a step-wise type.  相似文献   

15.
氧化锌富集物的进口能弥补我国锌矿资源的不足,但要求ZnO>50%、Fe<10%、Cl<8%、Cd<0.25%、As<0.6%。目前常采用YS/T 1171.1~10-2017《再生锌原料化学分析方法》检测氧化锌富集物中锌铁氯镉砷含量,该系列检测方法均需要繁琐的湿法样品前处理,测量过程较为冗长,不能满足氧化锌富集物大量进口时快速通关的需求。故实验建立了采用便携式X射线荧光光谱法(PXRF)同时测定氧化锌富集物中锌铁氯镉砷的方法。采用YS/T 1171.3-2017和YS/T 1171.5-2017方法对氧化锌富集物样品进行定值,然后选取21个含量具有梯度的氧化锌富集物样品作为校准样品,建立起各元素X射线荧光强度值与含量的校准曲线。各曲线相关系数在0.8164~0.9999,方法检出限为0.013%~1.95%,各元素的相对标准偏差(RSD,n=11)均小于0.05%。采用本方法和化学方法分别检测氧化锌富集物样品,各元素的本方法检测值与化学分析方法检测值的相对误差均小于20%。本方法能应用到口岸现场进口氧化锌富集物快速筛查,检测一个样品仅需1分钟测量时间,极大地加快了进口氧化锌富集物通关速度。  相似文献   

16.
《化学:亚洲杂志》2017,12(18):2343-2353
Graphene oxide and graphene quantum dots are attractive fluorophores that are inexpensive, nontoxic, photostable, water‐soluble, biocompatible, and environmentally friendly. They find extensive applications in fluorescent biosensors and chemosensors, in which they serve as either fluorophores or quenchers. As fluorophores, they display tunable photoluminescence emission and the “giant red‐edge effect”. As quenchers, they exhibit a remarkable quenching efficiency through either electron transfer or Förster resonance energy transfer (FRET) process. In this review, the origin of fluorescence and the mechanism of excitation wavelength‐dependent fluorescence of graphene oxide and graphene quantum dots are discussed. Sensor design strategies based on graphene oxide and graphene quantum dots are presented. The applications of these sensors in health care, the environment, agriculture, and food safety are highlighted.  相似文献   

17.
摘要用原位红外和脉冲实验研究了甲醇在氧化锌表面的吸附行为. FTIR结果表明, 甲醇吸附于氧化锌上易生成甲氧基, 且其生成量随着吸附温度的提高而增加. 进一步的研究结果表明, 甲氧基是由甲醇同氧化锌表面的羟基反应生成的, 将其暴露于水蒸汽中后很快消失. 脉冲实验发现, 氧化锌上脉冲甲醇时产生水, 再脉冲水则产生甲醇. 因此甲醇在氧化锌表面吸附生成甲氧基和水的反应是可逆的.  相似文献   

18.
Nitric oxide (NO) plays an important role in physiological processes and it has been confirmed some human diseases are related to its biological function. Electrochemical sensors provide an efficient way to explore the NO function in biological processes. This review details different kinds of electrochemical sensors used for NO concentration detection between 2008 and 2013 together with their application in biological samples. Four commonly used electrodes and different assisted analysis membranes used for contributions towards the development of the novel sensors were summarized. Electrochemical sensors employed to measure NO concentration in a single cell, cell culture, tissue homogenate, organ, in vivo, human being, as well as in plant were also detailed. The trends of developing novel NO sensors were outlooked in the last part.  相似文献   

19.
研究以粗氧化锌为原料制取活性氧化锌的浸取工艺。采用氨配合法将粗氧化锌中的锌充分浸取,以低级氧化锌为原料,对固液比、反应时间、碳酸氢铵用量、反应温度等因素先进行单因素实验,考察对氨配合法浸取率的影响,并在此基础上对主要的影响因素进行正交实验,从而优化出最佳浸取工艺条件为:浸取温度40℃,浸取时间3 h,固液比70 g/mL,碳酸氢铵用量2.5 g,浸取率可达92%。  相似文献   

20.
The rapid development of industrialization has resulted in severe environmental problems. A comprehensive assessment of air quality is urgently required all around the world. Among various technologies used in gas molecule detection, including Raman spectroscopy, Fourier transform infrared (FTIR) spectroscopy, mass spectroscopy (MS), electrochemical sensors, and metal oxide semiconductor (MOS) gas sensors, MOS gas sensors possess the advantages of small dimension, low power consumption, high sensitivity, low production cost, and excellent silicon chip compatibility. MOS sensors hold great promise for future Internet of Things (IoT) sensors, which will have a profound impact on indoor and outdoor air quality monitoring. The development of nanotechnology has significantly enhanced the development of MOS gas sensors. Among various nanostructures like nanoparticles, nanosheets and nanowires, the emergence of quasi-one-dimensional (q1D) nanowires/nanorods/nanofibers, with unique q1D geometry (facilitating fast carrier transport) and large surface-to-volume ratio, potentially act as ideal sensing channels for MOS sensors with extremely small dimension, and good stability and sensitivity. These structures have thus been the focus of extensive research. Among the various MOS nanomaterials available, tungsten oxide (WO3-x, 0 ≤ x < 1) nanowires feature the characteristic properties (multiple oxidation states, rich substoichiometric oxides with distinct properties, photo/electrochromism, (photo)catalytic properties, etc.), and unique q1D geometry (single-crystalline pathway for fast carrier transport, large surface-to-volume ratio, etc.). WO3-x nanowires have broad applications in smart windows, energy conversation & storage, and gas sensing devices, and have thus become a focus of attention. In this paper, the fundamental properties of tungsten oxide, synthesis methods and growth mechanism of tungsten oxide nanowires are reviewed. Among various (vapor-liquid-solid (VLS), vapor-solid (VS) and thermal oxidation) growth methods, the thermal oxidation method enables an in situ integration of WO3-x nanowires on predefined electrodes (so-called bridged nanowire devices) via the oxidation of lithographically patterned W film at relatively low growth temperature (~500 ℃) because of interfacial strain, defects and oxygen on the surface of the W film. The novel bridged nanowire-based sensor devices outperform traditional lateral nanowire devices in terms of larger exposure area, low power consumption via self-heating, and greater convenience in device processing. Recent progress in bridged WO3-x nanowire devices and sensitive NOx molecule detection under low power consumption have also been reviewed. Power consumption of as low as a few milliwatts was achieved, and the detection limit of NO2 was reduced to 0.3 ppb (1 ppb = 1 × 10-9, volume fraction). In situ formed bridged WO3-x nanowire devices potentially satisfy the strict requirements of IoT sensors (small dimension, low power consumption, high integration, low cost, high sensitivity, and selectivity), and hold great promises for future IoT sensors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号