首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Steady-shear and dynamic properties of a pooled sample of cattle synovial fluid have been measured using techniques developed for low viscosity fluids. The rheological properties of synovial fluid were found to exhibit typical viscoelastic behaviour and can be described by the Carreau type A rheological model. Typical model parameters for the fluid are given; these may be useful for the analysis of the complex flow problems of joint lubrication.The two major constituents, hyaluronic acid and proteins, have been successfully separated from the pooled sample of synovial fluid. The rheological properties of the hyaluronic acid and the recombined hyaluronic acid-protein solutions of both equal and half the concentration of the constituents found in the original synovial fluid have been measured. These properties, when compared to those of the original synovial fluid, show an undeniable contribution of proteins to the flow behaviour of synovial fluid in joints. The effect of protein was found to be more prominent in hyaluronic acid of half the normal concentration found in synovial fluid, thus providing a possible explanation for the differences in flow behaviour observed between synovial fluid from certain diseased joints compared to normal joint fluid.Nomenclature A Ratio of angular amplitude of torsion head to oscillation input signal - G Storage modulus - G Loss modulus - I Moment of inertia of upper platen — torsion head assembly - K Restoring constant of torsion bar - N 1 First normal-stress difference - R Platen radius - S (i) Geometric factor in the dynamic property analysis - t 1 Characteristic time parameter of the Carreau model - X, Y Carreau model parameters - Z () Reimann Zeta function of - Carreau model parameter - Shear rate - Apparent steady-shear viscosity - * Complex dynamic viscosity - Dynamic viscosity - Imaginary part of the complex dynamic viscosity - 0 Zero-shear viscosity - 0 Cone angle - Carreau model characteristic time - Density of fluid - Shear stress - Phase difference between torsion head and oscillation input signals - 0 Zero-shear rate first normal-stress coefficient - Oscillatory frequency  相似文献   

2.
Summary The cooling of a hot fluid in laminar Newtonian flow through cooled elliptic tubes has been calculated theoretically. Numerical data have been computed for the two values 1.25 and 4 of the axial ratio of the elliptic cross-section . For =1.25 the influence of non-zero thermal resistance between outmost fluid layer and isothermal surroundings has also been investigated. Special attention has been given to the distribution of heat flux around the perimeter; when increases the flux varies more with the position at the circumference. This positional dependence becomes less pronounced, however, as the (position-independent) thermal resistance of the wall increases.Flattening of the conduit, while maintaining its cross-sectional area constant, improves the cooling. Comparison with rectangular pipes shows that this improvement is not as marked with elliptic as with rectangular pipes.Nomenclature A k =A m, n coefficients of expansion (6) - a, b half-axes of ellipse, b<a - a p =a r, s coefficients of representation (V) - D hydraulic diameter, = 4S/P; S = cross-sectional area, P = perimeter - D e equivalent diameter, according to (13) - n coordinate (outward) normal to the tube wall - T temperature of fluid - T i temperature of fluid at the inlet - T s temperature of surroundings - v 0 mean velocity of fluid - v z longitudinal velocity of fluid - x, y carthesian coordinates coinciding with axes of ellipse - z coordinate in flow direction - , dimensionless half-axes of ellipse, =a/D and =b/D - t heat transfer coefficient from fluid at bulk temperature to surroundings; equation (11) - w heat transfer coefficient at the wall; equation (3) - axial ratio of ellipse, = a/b = / - , , , dimensionless coordinates; =x/D, =y/D, =z/D, =n/D - dimensionless temperature, = (T–T s)/(T iT s) - 0 cup-mixing mean value of ; equation (10) - thermal conductivity of fluid - m,n = k eigenvalue - c volumetric heat capacity of fluid - m, n = k = k eigenfunction; equations (6) and (I) - Nu total Nusselt number, = t D/ - Nusselt number at large distance from the inlet - Nu w wall Nusselt number, = w D/, based on w - Pé Péclet number, = 0 Dc/  相似文献   

3.
The documentation and control of flow disturbances downstream of various open inlet contractions was the primary focus with which to evaluate a spatial sampling technique. An X-wire probe was rotated about the center of a cylindrical test section at a radius equal to one-half that of the test section. This provided quasi-instantaneous multi-point measurements of the streamwise and azimuthal components of the velocity to investigate the temporal and spatial characteristics of the flowfield downstream of various contractions. The extent to which a particular contraction is effective in controlling ingested flow disturbances was investigated by artificially introducing disturbances upstream of the contractions. Spatial as well as temporal mappings of various quantities are presented for the streamwise and azimuthal components of the velocity. It was found that the control of upstream disturbances is highly dependent on the inlet contraction; for example, reduction of blade passing frequency noise in the ground testing of jet engines should be achieved with the proper choice of inlet configurations.List of symbols K uv correlation coefficient= - P percentage of time that an azimuthal fluctuating velocity derivative dv/d is found - U streamwise velocity component U=U (, t) - V azimuthal or tangential velocity component due to flow and probe rotation V=V (, t) - mean value of streamwise velocity component - U m resultant velocity from and - mean value of azimuthal velocity component induced by rotation - u fluctuating streamwise component of velocity u=u(, t) - v fluctuating azimuthal component of velocity v = v (, t) - u phase-averaged fluctuating streamwise component of velocity u=u(0) - v phase-averaged fluctuating azimuthal component of velocity v=v() - û average of phase-averaged fluctuating streamwise component of velocity (u()) over cases I-1, II-1 and III-1 û = û() - average of phase-averaged fluctuating azimuthal component of velocity (v()) over cases I-1, II-1 and III-1 - u fluctuating streamwise component of velocity corrected for non-uniformity of probe rotation and/or phase-related vibration u = u(0, t) - v fluctuating azimuthal component of velocity corrected for non-uniformity or probe rotation and/or phase-related vibration v=v (, t) - u 2 rms value of corrected fluctuating streamwise component of velocity - rms value of corrected fluctuating azimuthal component of velocity - phase or azimuthal position of X-probe  相似文献   

4.
The behavior of supersonic mixing layers under three conditions has been examined by schlieren photography and laser Doppler velocimetry. In the schlieren photographs, some large-scale, repetitive patterns were observed within the mixing layer; however, these structures do not appear to dominate the mixing layer character under the present flow conditions. It was found that higher levels of secondary freestream turbulence did not increase the peak turbulence intensity observed within the mixing layer, but slightly increased the growth rate. Higher levels of freestream turbulence also reduced the axial distance required for development of the mean velocity. At higher convective Mach numbers, the mixing layer growth rate was found to be smaller than that of an incompressible mixing layer at the same velocity and freestream density ratio. The increase in convective Mach number also caused a decrease in the turbulence intensity ( u/U).List of symbols a speed of sound - b total mixing layer thickness between U 1 – 0.1 U and U 2 + 0.1 U - f normalized third moment of u-velocity, f u3/(U)3 - g normalized triple product of u2 , g u2/(U)3 - h normalized triple product of u 2, h u 2/(U)3 - l u axial distance for similarity in the mean velocity - l u axial distance for similarity in the turbulence intensity - M Mach number - M c convective Mach number (for 1 = 2), M c (U 1U 2)/(a 1 + a 2) - P static pressure - r freestream velocity ratio, r U 2/U 1 - Re unit Reynolds number, Re U/ - s freestream density ratio, s 2/1 - T t total temperature - u instantaneous streamwise velocity - u deviation of u-velocity, uuU - U local mean streamwise velocity - U 1 primary freestream velocity - U 2 secondary freestream velocity - average of freestream velocities, (U 1 + U 2)/2 - U freestream velocity difference, U U 1U 2 - instantaneous transverse velocity - v deviation of -velocity, V - V local mean transverse velocity - x streamwise coordinate - y transverse coordinate - y 0 transverse location of the mixing layer centerline - ensemble average - ratio of specific heats - boundary layer thickness (y-location at 99.5% of free-stream velocity) - similarity coordinate, (yy 0)/b - compressible boundary layer momentum thickness - viscosity - density - standard deviation - dimensionless velocity, (UU 2)/U - 1 primary stream - 2 secondary stream A version of this paper was presented at the 11th Symposium on Turbulence, October 17–19, 1988, University of Missouri-Rolla  相似文献   

5.
The flow of a viscoelastic liquid driven by the steadily rotating bottom cover of a cylindrical cup is investigated. The flow field and the shape of the free surface are determined at the lowest significant orders of the regular domain perturbation in terms of the angular velocity of the bottom cap. The meridional field superposed on a primary azimuthal field shows a structure of multiple cells. The velocity field and the shape of the free surface are strongly effected by the cylinder aspect ratio and the elasticity of the liquid. The use of this flow configuration as a free surface rheometer to determine the first two Rivlin-Ericksen constants is shown to be promising.Nomenclature R, ,Z Coordinates in the physical domain D - , , Coordinates in the rest stateD 0 - r, ,z Dimensionless coordinates in the rest stateD 0 - Angular velocity - Zero shear viscosity - Surface tension coefficient - Density - Dimensionless surface tension parameter - 1, 2 The first two Rivlin-Ericksen constants - Stream function - Dimensionless second order meridional stream function - * Dimensionless second normal stress function - 2 Dimensionless sum of the first and second normal stress functions - N 1,N 2 The first and second normal stress functions - n Unit normal vector - D Stretching tensor - A n nth order Rivlin-Ericksen tensor - S Extra-stress - u Velocity field - U Dimensionless second order meridional velocity field - V Dimensionless first order azimuthal velocity field - p Pressure - Modified pressure field - P Dimensionless second order pressure field - J Mean curvature - a Cylinder radius - d Liquid depth at rest - D Dimensionless liquid depth at rest - h Free surface height - H Dimensionless free surface height at the second order  相似文献   

6.
This paper presents a new formulation for the laminar free convection from an arbitrarily inclined isothermal plate to fluids of any Prandtl number between 0.001 and infinity. A novel inclination parameter is proposed such that all cases of the horizontal, inclined and vertical plates can be described by a single set of transformed equations. Moreover, the self-similar equations for the limiting cases of the horizontal and vertical plates are recovered from the transformed equations by setting=0 and=1, respectively. Heated upward-facing plates with positive and negative inclination angles are investigated. A very accurate correlation equation of the local Nusselt number is developed for arbitrary inclination angle and for 0.001 Pr .
Wärmeübertragung bei freier Konvektion an einer isothermen Platte mit beliebiger Neigung
Zusammenfasssung Diese Untersuchung stellt eine neue Formulierung der laminaren freien Konvektion von Flüssigkeiten mit einer Prandtl-Zahl zwischen 0,001 und unendlich an einer beliebig schräggestellten isothermen Platte dar. Ein neuer Neigungsparameter wird eingeführt, so daß alle Fälle der horizontalen, geneigten oder vertikalen Platte von einem einzigen Satz transformierter Gleichungen beschrieben werden können. Die unabhängigen Gleichungen für die beiden Fälle der horizontalen and vertikalen Platte wurden für=0 und=1 aus den transformierten Gleichungen wieder abgeleitet. Es wurden erwärmte aufwärtsgerichtete Platten mit positiven und negativen Neigungswinkeln untersucht. Eine sehr genaue Gleichung wurde für die lokale Nusselt-Zahl bei beliebigen Neigungswinkeln und für 0,001 Pr entwickelt.

Nomenclature C p specific heat - f reduced stream function - g gravitational acceleration - Gr local Grashof number,g(T w T w ) x3/v2 - h local heat transfer coefficient - k thermal conductivity - n constant exponent - Nu local Nusselt number,hx/k - p pressure - Pr Prandtl number, v/ - Ra local Rayleigh number,g(T w T )J x3/v - T fluid temperature - T w wall temperature - T temperature of ambient fluid - u velocity component in x-direction - v velocity component in y-direction - x coordinate parallel to the plate - y coordinate normal to the plate Greek symbols thermal diffusivity - thermal expansion coefficient - (Ra¦sin¦)1/4/( Ra cos()1/5 - pseudo-similarity variable, (y/) - dimensionless temperature, (TT )/(T wT ) - ( Ra cos)1/5+(Rasin)1/4 - v kinematic viscosity - 1/[1 +(Ra cos)1/5/( Ra¦sin)1/4] - density of fluid - Pr/(1+Pr) - w wall shear stress - angle of plate inclination measured from the horizontal - stream function - dimensionless dynamic pressure  相似文献   

7.
The results of the hydraulic studies of gas-liquid media, wave processes in two-phase media and critical phenomena are described. Some methodological foundations to describe these media and methods to obtain the basic similarity criteria for the hydraulics and gas-dynamics of bubble suspensions are discussed. A detailed consideration is given for the phase transition processes on interfaces and the interface stability. A relation has been revealed between the wave and critical phenomena in two-phase systems.Nomenclature a thermal diffusivity - Ar Archimedes number - B gas constant - C heat capacity - C p heat capacity at constant pressure - C v heat capacity at constant volume - c 0 acoustic velocity in the mixture - c l acoustic velocity in the liquid - C f flow resistance coefficient - G mass rate of flow - g gravitational acceleration - L latent heat of evaporation - l initial perturbation width - M Mach number - Nu Nusselt number - P pressure - Pr Prandtl number - R bubble radius - (3P 0/R 0 2 f )–1 bubble resonance frequency square - T temperature - U medium motion velocity - W heavy phase velocity - W light phase velocity - We Weber number - heat release coefficient - dispersion coefficient - void fraction - adiabatic index - film thickness - dimensionless film thickness - kinematic viscosity coefficient - dynamical viscosity coefficient - dissipation coefficient in the mixture - dispersion parameter - f liquid phase density - light phase density - heat conductivity - surface tension - frequency, 0 2 =3P 0/ f R 0 2  相似文献   

8.
Summary A three-parameter model is introduced to describe the shear rate — shear stress relation for dilute aqueous solutions of polyacrylamide (Separan AP-30) or polyethylenoxide (Polyox WSR-301) in the concentration range 50 wppm – 10,000 wppm. Solutions of both polymers show for a similar rheological behaviour. This behaviour can be described by an equation having three parameters i.e. zero-shear viscosity 0, infinite-shear viscosity , and yield stress 0, each depending on the polymer concentration. A good agreement is found between the values calculated with this three-parameter model and the experimental results obtained with a cone-and-plate rheogoniometer and those determined with a capillary-tube rheometer.
Zusammenfassung Der Zusammenhang zwischen Schubspannung und Schergeschwindigkeit von strukturviskosen Flüssigkeiten wird durch ein Modell mit drei Parametern beschrieben. Mit verdünnten wäßrigen Polyacrylamid-(Separan AP-30) sowie Polyäthylenoxidlösungen (Polyox WSR-301) wird das Modell experimentell geprüft. Beide Polymerlösungen zeigen im untersuchten Schergeschwindigkeitsbereich von ein ähnliches rheologisches Verhalten. Dieses Verhalten kann mit drei konzentrationsabhängigen Größen, nämlich einer Null-Viskosität 0, einer Grenz-Viskosität und einer Fließgrenze 0 beschrieben werden. Die Ergebnisse von Experimenten mit einem Kegel-Platte-Rheogoniometer sowie einem Kapillarviskosimeter sind in guter Übereinstimmung mit den Werten, die mit dem Drei-Parameter-Modell berechnet worden sind.

a Pa–1 physical quantity defined by:a = {1 – ( / 0)}/ 0 - c l concentration (wppm) - D m capillary diameter - L m length of capillary tube - P Pa pressure drop - R m radius of capillary tube - u m s–1 average velocity - v r m s–1 local axial velocity at a distancer from the axis of the tube - shear rate (–dv r /dr) - local shear rate in capillary flow - s–1 wall shear rate in capillary flow - Pa s dynamic viscosity - a Pa s apparent viscosity defined by eq. [2] - ( a ) Pa s apparent viscosity in capillary tube at a distanceR from the axis - 0 Pa s zero-shear viscosity defined by eq. [4] - Pa s infinite-shear viscosity defined by eq. [5] - l ratior/R - kg m density - Pa shear stress - 0 Pa yield stress - r Pa local shear stress in capillary flow - R Pa wall shear stress in capillary flow R = (PR/2L) - v m3 s–1 volume rate of flow With 8 figures and 1 table  相似文献   

9.
General expressions for evaluating the asymptotic Nusselt number for a Newtonian flow through a parallel-plate channel with recycle at the ends have been derived. Numerical results with the ratio of thicknesses as a parameter for various recycle ratios are obtained. A regression analysis shows that the results can be expressed by log Nur0.83=0.3589 (log)2 -0.2925 (log) + 0.3348 forR 3, 0.1 0.9; logNu=0.5982(log)2 +0.3755 × 10–2 (log) +0.8342 forR 10–2, 0.1 0.9.
Asymptotische Nusselt-Zahlen für die Newtonsche Strömung durch einen Kanal aus parallelen Platten mit Rückführung
Zusammenfassung In dieser Untersuchung wurden allgemeine Ausdrücke hergeleitet um die asymptotische Nusselt-Zahl für eine Newtonsche Strömung durch einen Kanal aus parallelen Platten mit Rückführung an den Enden berechnen zu können. Es wurden numerische Ergebnisse mit den Dicken-Verhältnissen, als Parameter für verschiedene Rückführungs-verhältnisse, erhalten. Eine Regressionsanalyse zeigt, daß die Ergebnisse wie folgt ausgedrückt werden können: log Nur0,83=0,3589 (log)2 -0,2925 (log) + 0,3348 fürR 3, 0,1 0,9; logNu=0,5982(log)2 +0,3755 × 10–2 (log) + 0,8342 fürR 10–2, 0,1 0,9.

Nomenclature A1 shooting value,d(0)/d - A2 shooting value,d(1)/d - B channel width - Gz Graetz number, UbW2/L - h m logarithmic average convective heat transfer coefficient - h x average local convective heat transfer coefficient - k thermal conductivity - L channel length - Nu average local Nusselt number, 2 hxW/k - Nu m logarithmic average Nusselt number, 2hmW/k - R recycle ratio, reverse volume flow rate divided by input volume flow rate - T temperature of fluid - T m bulk temperature, Eq. (8) - T 0 temperature of feed stream - T s wall temperature - U velocity distribution - U b reference velocity,V/BW - V input volume flow rate - v dimensionless velocity distribution, U/Ub - W channel thickness - x longitudinal coordinate - y transversal coordinate - Z1-z6 functions defined in Eq. (A1) - thermal diffusivity - least squares error, Eq. (A7) - weight, Eqs. (A8), (A9) - dimensionless coordinate,y/W - dimensionless coordinate,x/GzL - function, Eq. (7)  相似文献   

10.
An exact solution to the flow of a viscous incompressible fluid past an infinite vertical oscillating plate, in the presence of a foreign mass has been derived by the Laplace-transform technique when the plate temperature is linearly varying as time. The velocity profiles are shown on graphs and the numerical values of the skin-friction are listed in a table. It is observed that the skin-friction increases with increasingSc, t orGr but decreases with increasingGm ort, whereSc (the Schmidt number), (frequency),t (time),Gr (the Grashof number) andGm is (the modified Grashof number) andt.
Einfluß von Stoffübergang auf die Strömung entlang einer senkrechten oszillierenden Platte veränderlicher Temperaturen
Zusammenfassung Mit Hilfe der Laplace-Transformation wird eine exakte Lösung für die Strömung einer zähen, inkompressiblen Flüssigkeit entlang einer unendlich ausgedehnten, senkrechten, oszillierenden Platte gewonnen, wobei die Einwirkung eines Feststoffs Berücksichtigung findet und die Plattentemperatur linear mit der Zeit veränderlich sein soll. Die Geschwindigkeitsprofile sind in Diagrammen dargestellt und die numerischen Werte der Reibungsschubspannung in einer Tabelle. Letztere wächst mit der Schmidt-ZahlSc, der Grashof-ZahlGr und dem Produkt aus Frequenz und Zeitt; sie nimmt ab, wennGm (die modifizierte Grashof-Zahl) undt zunehmen.

Nomenclature C species concentration in the fluid near the plate - C species concentration in the fluid away from the plate - C W species concentration at the plate - C p specific heat at constant pressure - D chemical molecular diffusivity - Gm modified Grashof number - Gr Grashof number - g acceleration due to gravity - K thermal conductivity - P Prandtl number - Sc Schmidt number - T Temperature of the fluid near the plate - T W temperature of the plate - T temperature of the fluid far away from the plate - t time - u velocity of the fluid in the upward direction - U 0 amplitude of oscillation - x coordinate axis along the plate in the vertically upward direction - y coordinate axis normal to the plate Greek symbols skin-friction - viscosity - coefficient of volume expansion - * coefficient of species expansion - density - frequency  相似文献   

11.
Zusammenfassung Die in Teil I vorgestellten Reynolds 'schen Gleichungen und Transportgleichungen werden für Strömungen mit Grenzschichtcharakter angegeben. Weiter werden Integralbedingungen mitgeteilt. Nach einer Diskussion über die Schließung des Gleichungssystems werden Lösungsverfahren besprochen. Dabei wird speziell auf Integralverfahren eingegangen.
About the transfer of momentum, heat and mass in turbulent flows of binary mixturesPart II: Thin shear flow layers
The Reynolds equations and transport equations given in part I are presented for thin shear flow layers. Integral relations are given. After a discussion of the closure problem methods of solution are described. Specially integral methods are discussed.

Formelzeichen c Massenkonzentration der Komponente - ct charakteristische Konzentrationsschwankung - co Bezugskonzentration - c spezifische Wärme bei konstantem Druck - cf Reibungsbeiwert - cD Dissipationsintegral - cE Entrainment-Funktion - c Schubspannungsintegral - D binsrer Diffusionskoeffizient - H Formparameter - H12 Formparameter - H32 Formparameter - j Kassendiffusionsstrom - L Bezugslänge - p Druck - pt charakteristische Druckschwankung - po Bezugsdruck - Pr Prandtl-Zahl - q Wärmestrom - q2/2 kinetische Energie der Schwankungsbewegung - ReL mit L gebildete Reynolds-Zahl - Re mit gebildete Reynolds-Zahl - Re2 mit 2 gebildete Reynolds-Zahl - Sc Schmidt-Zahl - T absolute Temperatur - Tt charakteristische TemperaturSchwankung - To Bezugstemperatur - u,v,w Geschwindigkeitskomponenten - ut charakteristische Geschwindigkeitsschwankung - uo Bezugsgeschwindigkeit - U=/ü dimensionslose. x-Komponente der Geschwindigkeit - x,y,z Komponenten des Ortsvektors Griechische Symbole Grenzschichtdicke - 1 Verdrängungsdicke - 2 Impulsverlustdicke - 3 Energieverlustdicke - T Enthalpieverlustdicke - c Konzentrationsverlustdicke - =d/dx Parameter für die Grenzschichtabsch:atzung - turbulente Impulsaustauschgröße - D turbulente Stoffaustauschgröße - q turbulente Energieaustauschgröße - Dissipationsfunktion - Wärmeleitfähigkeit - dynamische Viskosität - v=/ kinematische Viskosität - Dichte - Produktionsdichte - Schubspannung Indizes mol molekularer Anteil - tur turbulenter Anteil - res resultierender Anteil - Außenrand der Grenzschicht - w Wand  相似文献   

12.
Heat transfer characteristics during the vaporization process of a pentane or furan drop in an aqueous glycerol of high viscosity has been studied. With the progress of vaporization, the overall heat transfer coefficient related to the liquid-liquid interfacial area of a two-phase bubble increases monotonically, and influences of initial drop diameter and temperature difference reduce. Some convection or circulation seems to occur in the unvaporized-liquid phase.
Verdampfung einzelner Flüssigkeitstropfen in einer nicht mischbaren Flüssigkeit. Teil II: Der Wärmeübergang
Zusammenfassung In dieser Arbeit wird der Wärmeübergang während der Verdampfung von Pentan- und Furan-Tropfen in einer wässerigen Glyzerinlösung hoher Viskosität untersucht. Mit fortschreitender Verdampfung steigt der Wärmeübergangskoeffizient, bezogen auf die Grenzfläche flüssig-flüssig der zweiphasigen Blase monoton an, wobei Einflüsse des anfänglichen Tropfendurchmessers und der Temperaturdifferenz abnehmen. In der nichtverdampften Flüssigkeitsphase scheint Konvektion oder Zirkulation aufzutreten.

Nomenclature A total surface area of two-phase bubble - AL liquid-liquid interfacial area of two-phase bubble - D equivalent spherical diamter of two-phase bubble - Di initial drop diameter - h average overall heat transfer coefficient related to A - hc average outside heat transfer coefficient related to A - q local outside heat transfer coefficient - hL average overall heat transfer coefficient related to AL - hLc average outside heat transfer coefficient related to AL - kc thermal conductivity of continuous-phase liquid - kdl thermal conductivity of dispersed-phase liquid - kv correction factor of velocity [cf. Eq.(2)] - Nuc =hc D/k - Nuc =hc D/kc - Pec =UD/c - Prc =c/c - Q cumulative heat transferred into two-phase bubble - q local heat flux - r radial distance in spherical co-ordinates - R radius of two-phase bubble - T temperature - TL interface temperature between continuousphase and dispersed-phase component in liquid phase - T bulk temperature - T temperature difference - T nominal temperature difference - U velocity of rise of two-phase bubble - u velocity gradient in r direction [cf. Eq.(9)] - ur velocity component in r direction - u velocity component in direction - V volume of two-phase bubble - Vdl volume of dispersed-phase component in liquid phase - X defined in Eq.(7) - Y defined in Eq.(8) - Z defined in Eq.(12) - c thermal diffusivity of continuous-phase liquid - half opening angle of vapor phase in two-phase bubble - average thickness of dispersed-phase component in liquid phase [cf. Eq.(22)] - angle in spherical co-ordinates - vaporization ratio - time  相似文献   

13.
The objective of this paper is to present an overview of the fundamental equations governing transport phenomena in compressible reservoirs. A general mathematical model is presented for important thermo-mechanical processes operative in a reservoir. Such a formulation includes equations governing multiphase fluid (gas-water-hydrocarbon) flow, energy transport, and reservoir skeleton deformation. The model allows phase changes due to gas solubility. Furthermore, Terzaghi's concept of effective stress and stress-strain relations are incorporated into the general model. The functional relations among various model parameters which cause the nonlinearity of the system of equations are explained within the context of reservoir engineering principles. Simplified equations and appropriate boundary conditions have also been presented for various cases. It has been demonstrated that various well-known equations such as Jacob, Terzaghi, Buckley-Leverett, Richards, solute transport, black-oil, and Biot equations are simplifications of the compositional model.Notation List B reservoir thickness - B formation volume factor of phase - Ci mass of component i dissolved per total volume of solution - C i mass fraction of component i in phase - C heat capacity of phase at constant volume - Cp heat capacity of phase at constant pressure - D i hydrodynamic dispersion coefficient of component i in phase - DMTf thermal liquid diffusivity for fluid f - F = F(x, y, z, t) defines the boundary surface - fp fractional flow of phase - g gravitational acceleration - Hp enthalpy per unit mass of phase - Jp volumetric flux of phase - krf relative permeability to fluid f - k0 absolute permeability of the medium - Mp i mass of component i in phase - n porosity - N rate of accretion - Pf pressure in fluid f - pca capillary pressure between phases and =p-p - Ri rate of mass transfer of component i from phase to phase - Ri source source rate of component i within phase - S saturation of phase - s gas solubility - T temperature - t time - U displacement vector - u velocity in the x-direction - v velocity in the y-direction - V volume of phase - Vs velocity of soil solids - Wi body force in coordinate direction i - x horizontal coordinate - z vertical coordinate Greek Letters p volumetric coefficient of compressibility - T volumetric coefficient of thermal expansion - ij Kronecker delta - volumetric strain - m thermal conductivity of the whole matrix - internal energy per unit mass of phase - gf suction head - density of phase - ij tensor of total stresses - ij tensor of effective stresses - volumetric content of phase - f viscosity of fluid f  相似文献   

14.
An analysis is presented for the primary resonance of a clamped-hinged beam, which occurs when the frequency of excitation is near one of the natural frequencies,n . Three mode interaction (2 31 and 3 1 + 22) is considered and its influence on the response is studied. The case of two mode interaction (2 31) is also considered to compare it with the case of three mode interaction. The straight beam experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is applied to solve the system. Steady-state responses and their stability are examined. Results of numerical investigations show that there exists no significant difference between both modal interactions' influences on the responses.  相似文献   

15.
In this work we consider transport in ordered and disordered porous media using singlephase flow in rigid porous mediaas an example. We defineorder anddisorder in terms of geometrical integrals that arise naturally in the method of volume averaging, and we show that dependent variables for ordered media must generally be defined in terms of thecellular average. The cellular average can be constructed by means of a weighting function, thus transport processes in both ordered and disordered media can be treated with a single theory based on weighted averages. Part I provides some basic ideas associated with ordered and disordered media, weighted averages, and the theory of distributions. In Part II a generalized averaging procedure is presented and in Part III the closure problem is developed and the theory is compared with experiment. Parts IV and V provide some geometrical results for computer generated porous media.Roman Letters A interfacial area of the- interface contained within the macroscopic region, m2 - Ae area of entrances and exits for the-phase contained within the macroscopic system, m2 - g gravity vector, m/s2 - I unit tensor - K traditional Darcy's law permeability tensor, m2 - L general characteristic length for volume averaged quantities, m - characteristic length (pore scale) for the-phase - (y) weighting function - m(–y) (y), convolution product weighting function - v special weighting function associated with the traditional averaging volume - N unit normal vector pointing from the-phase toward the-phase - p pressure in the-phase, N/m2 - p0 reference pressure in the-phase, N/m2 - p traditional intrinsic volume averaged pressure, N/m2 - r0 radius of a spherical averaging volume, m - r position vector, m - r position vector locating points in the-phase, m - averaging volume, m3 - V volume of the-phase contained in the averaging volume, m3 - V cell volume of a unit cell, m3 - v velocity vector in the-phase, m/s - v traditional superficial volume averaged velocity, m/s - x position vector locating the centroid of the averaging volume or the convolution product weighting function, m - y position vector relative to the centroid, m - y position vector locating points in the-phase relative to the centroid, m Greek Letters indicator function for the-phase - Dirac distribution associated with the- interface - V/V, volume average porosity - mass density of the-phase, kg/m3 - viscosity of the-phase, Ns/m2  相似文献   

16.
Laser-Doppler velocimetry (LDV) measurements and flow visualizations are used to study a turbulent boundary layer over a smooth wall with transverse square cavities at two values of the momentum thickness Reynolds number (R =400 and 1300). The cavities are spaced 20 element widths apart in the streamwise direction. Flow visualizations reveal a significant communication between the cavities and the overlying shear layer, with frequent inflows and ejections of fluid to and from cavities. There is evidence to suggest that quasi-streamwise near-wall vortices are responsible for the ejections of fluid out of the cavities. The wall shear stress, which is measured accurately, increases sharply immediately downstream of the cavity. This increase is followed by a sudden decrease and a slower return to the smooth wall value. Integration of the wall shear stress in the streamwise direction indicates that there is an increase in drag of 3.4% at bothR .Nomenclature C f skin friction coefficient - C fsw friction coefficient for a continuous smooth wall - k height of the cavity - k + ku / - R Reynolds number based on momentum thickness (U 1 /v) - Rx Reynolds number based on streamwise distance (U 1 x/) - s streamwise distance between two cavities - t time - t + tu 2 / - U 1 freestream velocity - mean velocity inx direction - u,v,w rms turbulent intensities inx,y andz directions - u local friction velocity - u sw friction velocity for a continuous smooth wall - w width of the cavity - x streamwise co-ordinate measured from the downstream edge of the cavity - y co-ordinate normal to the wall - z spanwise co-ordinate - y + yu / - boundary layer thickness - 0 boundary layer thickness near the upstream edge of the cavity - i thickness of internal layer - kinematic viscosity of water - + zu / - momentum thickness  相似文献   

17.
The similarity solution of the radial turbulent jet with weak swirl is discussed and a new solution of the radial turbulent jet with swirl is proposed without restrictions assumed in the weak swirl solution.Nomenclature e swirl parameter - k experimental constant - l non-negative constant - M, M , N, P integral invariants - q velocity component in -direction - q max maximum velocity component in -direction - u radial velocity component - u max maximum radial velocity component - v axial velocity component - w peripheral velocity component - w max maximum peripheral velocity component - x radial coordinate - y transverse coordinate - angle introduced in (28) - characteristic width of a jet - (x, y) similarity variable (scaled x and y coordinate) - molecular kinematic viscosity - T eddy kinematic viscosity - tangential coordinate - fluid density - turbulent shear stress in -direction - xy , y components of turbulent shear stress tensor - (x, y) stream function  相似文献   

18.
A method of analysis is described which yields quasianalytical solutions for one and multidimensional unsteady heat conduction problems with linearly dependent thermal properties, such as thermal conductivity and volumetric specific heat. The method accomodates rather general thermal boundary conditions including arbitrary variations in surface temperature or in surface heat flux or a convective exchange with a fluid having even varying temperature. Once the solution for the identical problem but with constant properties has been developed, its practical realization is rather direct, being facilitated by a reduced number of iterations. The four applied examples given in this work show that a wide variety of nonlinear heat conduction problems can be tackled by this procedure without much difficulty. These simple solutions compare favorably with more laborious results reported in the archival heat transfer literature.
Berechnung nichtstationärer Wärmeleitvorgänge mit linear temperaturabhängigen Stoffwerten aus der Lösung für konstante Stoffwerte
Zusammenfassung Es werden quasi-analytische Lösungen für ein- und mehrdimensionale nichtstationäre Wärmeleitprobleme mit linear temperaturabhängigen Stoffwerten, wie Wärmeleitfähigkeit und volumetrische Wärmekapazität, mitgeteilt. Die Methode gilt für recht allgemeine Randbedingungen wie beliebige Veränderungen der Oberflächentemperatur, der Wärmestromdichte oder auch konvektiven Wärmeaustausch mit veränderlicher Fluidtemperatur. Ist die Lösung für das identische Problem mit konstanten Stoffwerten bekannt, kann die Methode direkt mit einer begrenzten Zahl von Iterationen angewandt werden. Die vier hier mitgeteilten Beispiele zeigen, daß eine große Zahl nichtlinearer Wärmeleitprobleme auf diese Weise ohne Schwierigkeit angepackt werden können. Die einfachen Lösungen stimmen befriedigend mit komplizierteren Ergebnissen aus der Literatur überein.

Nomenclature a side of square bar - B i0 reference Biot number,hR/k0 - B i0 T transformed Biot number, equation (16) - c geometric parameter, equation (8) - h convective coefficient - k thermal conductivity - k 0 value ofk atT 0 - K dimensionless thermal conductivity,k/k 0 - K i value ofK at i - K i+1 value ofK at i+1 - m k slope of theK- line, equation (3) - m s slope of theS- line, equation (4) - R characteristic length - s volumetric specific heat - s 0 value of s at T0 - S dimensionless volumetric specific heat, s/s0 - S i value ofS at i - S i+1 value of S at i+1 - t time - T temperature - T 0 reference temperature - x, y cartesian coordinates - X, Y dimensionless cartesian coordinates,x/a andy/a - thermal diffusivity - k transformed time, equation (11) - s transformed time, equation (37) - k dimensionless time for variable conductivity, equation (8) - s dimensionless time for variable specific heat, equation (34) - dimensionless temperature,T/T 0 - dimensionless coordinate,r/R - 0 value of at T0 - i lower value of the interval (i, i+1) - i+1 upper value of the interval (i, i+1  相似文献   

19.
The results of laboratory observations of the deformation of deep water gravity waves leading to wave breaking are reported. The specially developed visualization technique which was used is described. A preliminary analysis of the results has led to similar conclusions than recently developed theories. As a main fact, the observed wave breaking appears as the result of, first, a modulational instability which causes the local wave steepness to approach a maximum and, second, a rapidly growing instability leading directly to the breaking.List of symbols L total wave length - H total wave height - crest elevation above still water level - trough depression below still water level - wave steepness =H/L - crest steepness =/L - trough steepness =/L - F 1 forward horizontal length from zero-upcross point (A) to wave crest - F 2 backward horizontal length from wave crest to zero-downcross point (B) - crest front steepness =/F 1 - crest rear steepness =/F 2 - vertical asymmetry factor=F 2/F 1 (describing the wave asymmetry with respect to a vertical axis through the wave crest) - µ horizontal asymmetry factor=/H (describing the wave asymmetry with respect to a horizontal axis: SWL) - T 0 wavemaker period - L 0 theoretical wave length of a small amplitude sinusoïdal wave generated at T inf0 sup–1 frequency - 0 average wave height  相似文献   

20.
In this paper we study differential equations of the formx(t) + x(t)=f(x(t)), x(0)=x 0 C HereC is a closed, bounded convex subset of a Banach spaceX,f(C) C, and it is often assumed thatf(x) is a quadratic map. We study the differential equation by using the general theory of nonexpansive maps and nonexpansive, non-linear semigroups, and we obtain sharp results in a number of cases of interest. We give a formula for the Lipschitz constant off: C C, and we derive a precise explicit formula for the Lipschitz constant whenf is quadratic,C is the unit simplex inR n, and thel 1 norm is used. We give a new proof of a theorem about nonexpansive semigroups; and we show that if the Lipschitz constant off: CC is less than or equal to one, then limtf(x(t))–x(t)=0 and, if {x(t):t 0} is precompact, then limtx(t) exists. Iff¦C=L¦C, whereL is a bounded linear operator, we apply the nonlinear theory to prove that (under mild further conditions on C) limt f(x(t))–x(t)=0 and that limt x(t) exists if {x(t):t 0} is precompact. However, forn 3 we give examples of quadratic mapsf of the unit simplex ofR n into itself such that limt x(t) fails to exist for mostx 0 C andx(t) may be periodic. Our theorems answer several questions recently raised by J. Herod in connection with so-called model Boltzmann equations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号