首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Poly(vinylidene fluoride) film formation with electrospray deposition has been studied with support of a droplet evaporation model. The input parameters of the model consist basically of the solvent, the solute concentration, the flow rate, and the solution conductivity. The model provides the droplet size, the solute concentration, the droplet velocity, and the shear stress of the droplet at impact as a function of the distance between the nozzle and the substrate. With some additional experimental information such as the size change of the film with spray distance and the viscosity of the solution, the growth rate of the film and the shear rate of the droplet at impact can be determined. Growth rate is shown to define distinct regimes of film formation. In those regimes, only a single factor or a limited number of factors controls the film morphology. The most important factors include the shear rate and the surface energy. It is found that at a specific range of growth rates only the shear rate determines the morphology of the polymer film. Growth rate, as the defining quantity of film morphology, is not limited to polymer solutions. Therefore, the growth rate, in combination with the control factors mentioned above, functions as a general framework through which understanding and control of film formation with electrospray deposition can be improved.  相似文献   

2.
Electrohydrodynamic atomization (EHDA) has many applications such as electrospray ionization in mass spectroscopy, electrospray deposition of thin films, pharmaceutical productions, and polymeric particle fabrications for drug encapsulation. In the present study, EHDA was employed to produce biodegradable polymeric micro- and nanoparticles. The effects of processing parameters such as polymer concentration, flow rate, surfactants, organic salt, and setup configurations on the size and morphology of polymeric particles were investigated systematically. By changing the various processing parameters, controllable particle shape and size can be achieved. PLGA nanoparticles with size of around 250 nm can be obtained by using organic salts to increase the conductivity of the spraying solution even at a relatively high flow rate. A higher flow rate has the advantage of producing a stable cone spray and can be easily reproduced. Solid and porous particles can be fabricated using different experimental setups to control the organic solvent evaporation rate. Also, paclitaxel, a model antineoplastic drug, was encapsulated in polymeric particles which can be employed for controlled release applications. In short, EHDA is a promising technique to fabricate polymeric micro- or nanoparticles which can be used in drug delivery systems.  相似文献   

3.
The ultrasonic degradation of poly(vinyl acetate) (PVAc) solutions was carried out in dioxan at 25, 30, 35, 40, and 45 °C to investigate the effects of the temperature and solution concentration on the rate of degradation. The kinetics of degradation were studied by viscometry. The calculated rate constants indicated that the degradation rate of the PVAc solutions decreased as the temperature and solution concentration increased. The calculated rate constants were correlated in terms of the concentration, temperature, vapor pressure of dioxan, and relative viscosity of the PVAc solutions. This degradation behavior was interpreted in terms of the vapor pressure of dioxan, the viscosity, and the concentration of the polymer solutions. With increasing temperature, the vapor pressure of the solvent increased, and so the vapor entered the cavitation bubbles during their growth. This caused a reduction in collapsing shock because of a cushioning effect; therefore, the rate of degradation decreased. As the solution concentration increased, the viscosity increased and caused a reduction in the cavitation efficiency, and so the rate of degradation decreased. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 445–451, 2004  相似文献   

4.
The control of the morphology of nanostructured particles prepared by the spray drying of nanoparticle sol was investigated experimentally and the results are qualitatively explained based on available theory. A theoretical analysis indicates that the structural stability of the droplet and the hydrodynamic effects during the drying process play important roles in controlling the morphology of the resulting particles. The size of the sol in the droplet, droplet size, viscosity of droplet, drying temperature, gas flow rate, and addition of surfactant are all crucial parameters that affect the morphology of particles. Experimentally, nanostructured silica particles were prepared from a nanosize silica sol under various preparation conditions. Doughnut-shaped particles can be produced when the droplet size is large, in conjunction with high temperature, high gas flow rate and in the presence of an added surfactant. Appropriate choice of the spray drying method permits control of the particle size and shape, ranging from spheres to ellipsoids as well as doughnut-shaped particles by varying the preparation conditions. The results open a new route to controlling the formation of a wide variety of nanostructured particles.  相似文献   

5.
Among the various methods used to produce microparticles, electrospraying is becoming increasingly popular, and it has the advantage of control over the size, shape and morphology of the produced particles. Particle size and morphology are the main factors used to control the rate of microsphere degradation and drug diffusion. The aim of this study was to use some process and solution parameters of the electrospraying such as flow rate, collecting distance, nozzle diameter and polymer molecular weight to control size, shape and morphology of the produced particles. Tests demonstrated that the size of microparticle can be fine‐tuned by adjusting the variables of flow rate, collecting distance and nozzle diameter. Other relevant factors that can be as tuning parameters were those of solvent vapor pressure and application of a polymer mix with different molecular weights. Results showed that microparticle size increased under an increased flow rate and needle gauge setting and a decreased electrical field. Results of the tests showed that morphology of the produced microsphere could be adjusted by the aforementioned parameters. For example, by lowering solvent vapor pressure by adding solvent with a high boiling point, the morphology was changed from a textured surface to a smooth one. Molecular weight of the polymer had a significant effect on morphology, whereas polymer with a low molecular weight caused defect in the produced microparticle, and a high molecular weight produced cup‐like morphology, but a polymer mix that constituted polymers of high and low Molecular weights improved morphology of the produced particles. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

6.
Evaporation of a droplet of silica microsphere suspension on a polystyrene and poly(methyl methacrylate) blend film with isolated holes in its surface has been exploited as a means of particles self-assembly. During the retraction of the contact line of the droplet, spontaneous dewetting combined with the strong capillary force pack the silica microspheres into the holes in the polymer surface. Complex aggregates of colloids are formed after being exposed to acetone vapor. The morphology evolution of the underlying polymer film by exposure to acetone solvent vapor is responsible for the complex aggregates of colloids formation.  相似文献   

7.
The ordering processes of PS-b-P2VP block copolymer thin films with different processing histories were studied during solvent vapor annealing by in situ grazing incidence small-angle X-ray scattering (GISAXS). We compared cylinder-forming PS-b-P2VP thin films with 34 kg/mol molecular weight that were prepared in three different ways: spin coating, spin coating and subsequent solvent vapor annealing where the solvent vapor was removed instantaneously, and spin coating and subsequent solvent vapor annealing where the solvent vapor was removed slowly. Block copolymer thin films retained the morphology resulting from the different “processing histories” at smaller swelling ratios. This processing history was erased when the samples reached a higher swelling ratio (~1.4). After the solvent was slowly removed from the swollen film, the surface morphology was characterized by ex situ AFM. All samples showed the same morphology after solvent annealing regardless of the initial morphology, indicating the morphology of solvent annealed samples is determined by the polymer concentration in the swollen film and the solvent vapor removal rate, but not the processing history.  相似文献   

8.
Spontaneous phase-separated, controlled aggregate structures of photo- and electroactive molecules in polymer matrices are of interest for device fabrication. We show that the self-assembly of octabutoxyphthalocyanine (Pc) in polymer matrices leads to tubular morphology of Pc when the film is prepared with tetrachloroethane (TCE) and subsurface droplet morphology with chloroform. The same morphology is seen with both bisphenol A polycarbonate (BPAPC) and poly(methyl methacrylate) (PMMA) as the matrix. The subsurface morphology results from the rapid association of Pc in the polymer matrix, as the film forms. With the tubular morphology in the films prepared with TCE, percolation threshold is reached with a concentration of Pc as low as 3% (wt) in the polymer. Such phase-separated self-assembly occurs, without any annealing of the films. Even in the absence of the polymer, Pc crystallized from TCE also shows tubular morphology, whereas it exhibits a columnar morphology with chloroform. X-ray diffraction of Pc crystallized from either solvent shows the columnar stacking of the Pc molecules. However, the morphology is tubular when TCE is used. We attribute the difference in the morphology to the higher viscosity of TCE and the diffusion-limited growth, which causes the tubular morphology, whereas the instantaneous self-assembly in less-viscous chloroform leads to droplets. The solvent effect observed here could be used to tailor the morphology of such photoconductive molecules in polymer matrices.  相似文献   

9.
Patterns of parallel strips, consisting of alternating polystyrene (PS) and poly(vinyl pyrrolidone) (PVP) regions, were observed in thin films spin cast from a PS/PVP/chloroform solution on unpatterned substrates. The formation of anisotropic patterns, manifested not only in thickness variation but also in composition variation, was found to be driven by Marangoni instability, with the PS and PVP streams flowing toward the preferred regions as the phase separation induced by solvent evaporation proceeded. The initial viscosity of the polymer solution and the thickness of the spin-cast films were lumped into one single parameter to study the phase morphology development at various initial polymer solution concentrations. Interestingly, the ratio of the square of the film thickness to the viscosity, a parameter loosely related to the Marangoni number, was found to reach a maximum value at the concentration where the strip patterns were most well-developed.  相似文献   

10.
As is shown, the solution to the diffusion equation for the concentration of vapor in the presence of a droplet growing in it, derived for the usual initial condition and equilibrium boundary conditions at the droplet surface, fails to ensure an equality between the numbers of molecules that have left the vapor due to diffusion by the current moment and those that have been included in the growing droplet. The difference between the total numbers of vapor molecules at the initial moment (when the vapor had a given uniform concentration) and at the current moment (when the size of the growing droplet is much larger than its initial size) differs from the total number of molecules in the droplet by a factor of 3/2. By substituting the usual boundary condition at the droplet surface by a time-dependent boundary condition at the surface of a constant-radius sphere with the center in the center of the growing droplet, a solution to the diffusion problem for the vapor concentration is derived. This solution describes the evolution of the vapor concentration field, which agrees with the rate of the vapor absorption by the growing droplet and with the law of the conservation of matter.  相似文献   

11.
Rodlike polymer particles could have interesting properties and could find many practical applications; however, few methods for the production of such particles are available. We report a systematic study of a droplet shearing process for the formation of polymer rods with micrometer or submicrometer diameter and a length of up to tens of micrometers. The process is based on emulsification of a polymer solution under shear, combined with solvent attrition in the surrounding organic medium. The droplets deform and elongate into cylinders, which solidify when the solvent transfers to the dispersion medium. Stopped flow experiments allow distinguishing all stages of the mechanism. The results are interpreted on the basis of the theory of droplet elongation and breakup under shear. The effects of the viscosity ratio and shear stress are matched against the theoretical expectations. The method is simple, efficient, and scalable, and we demonstrate how it can be controlled and modified. The experimental parameters that allow varying the rod size and aspect ratio include shear rate, medium viscosity, and polymer concentration. Examples of the specific properties of the polymer rods, including self-organization, alignment in external fields and in fluid flows, and stabilization of bubbles, droplets, and capsules, are presented.  相似文献   

12.
We investigate the effects of interfacial energy between water and solvent as well as polymer concentration on the formation of porous structures of polymer films prepared by spin coating of cellulose acetate butyrate (CAB) in mixed solvent of tetrahydrofuran (THF) and chloroform under humid condition. The interfacial energy between water and the solvent was gradually changed by the addition of chloroform to the solvent. At a high polymer concentration (0.15 g/cm3 in THF), porous structures were limited only at the top surfaces of CAB films, regardless of interfacial energies, due to the high viscosity of the solution. At a medium concentration (approximately 0.08 g/cm3 in THF), CAB film had relatively uniform pores at the top surface and very small pores inside the film because of the mixing of the water droplets with THF solution. When chloroform was added to THF, pores at the inner CAB film had a comparable size with those at the top surface because of the reduced degree of the mixing between the water droplets and the mixed solvent. A further decrease in polymer concentration (0.05 g/cm3 in THF) caused the final films to have a two-layer porous structure, and the size of pores at each layer was almost the same.  相似文献   

13.
TiO2 thin film was prepared on Si substrate by plasma chemical vapor deposition (PCVD) system and the morphologies of TiO2 thin film were controlled by adjusting the initial precursor concentration. As the initial titanium tetra-isopropoxide (TTIP) concentration increases in PCVD reactor, the shapes of TiO2 particles generated in PCVD reactor change from the spherical small-sized particles around 20 nm and spherical large-sized particles around 60 nm to aggregate particles around 100 nm. The TiO2 particles with different shapes deposit on the substrate and become the main building blocks of resulting TiO2 thin film. We observed the TiO2 thin film with smooth morphology at low initial TTIP concentration, granular morphology at medium initial TTIP concentration, and columnar morphology at high initial TTIP concentration. It is proposed that we can prepare the TiO2 thin film with controlled morphologies in one-step process just by adjusting the initial precursor concentration in PCVD.  相似文献   

14.
We present a spray based-method for the formation and production of semiconductor nanocrystals that provides an attractive alternative to the commonly used epitaxial and colloidal procedures. According to this spray-based method, mainly thermospray, solutions of semiconductor salts are first sprayed into monodispersed droplets, which subsequently become solid nanocrystals by solvent evaporation. A semiconductor nanocrystal is produced from a single spray droplet upon the full vaporization of the solvent. The average diameter and size distribution of the final nanocrystals are controlled and determined by the solute concentration of the sprayed solution and by the droplet size, hence by the spray production parameters. The spray-produced nanocrystals are collected on any selected solid support. Representative results, shown in this letter, reveal the formation of CdS nanocrystals in the size range of 3 to 6 nanometers and with a size distribution of as low as five percent. A further structural analysis of these nanocrystals showed that they were formed in the zinc blend phase with a high degree of crystallinity.  相似文献   

15.
The effect of the temperature (of the substrate and the solution) during film deposition on spin coating process of sol-gel films is discussed. The increase of substrate temperature as well as coating solution liquid temperature leads to formation of thicker films with higher porosity. The temperature dependence of films thickness is mainly determined by the change of solvent vapour pressure with consideration for the change of liquid viscosity.  相似文献   

16.
A novel method for determining the viscosity of polymer solution   总被引:1,自引:0,他引:1  
The relative viscosity ηr and, thus, the reduced viscosity ηsp/C of polymer solution could be obtained by recording the flow times of the polymer solution and the pure solvent in a capillary viscometer. Our experimental results indicated that the measurement of the flow time of the pure solvent was unnecessary. In particular, if the recorded flow time of the pure solvent was used to determine the viscosity of polymer solution, the reduced viscosity ηsp/C exhibited either a drastic increase or a significant decrease in an extremely dilute solution, depending upon the properties of the polymer solution investigated. In this research work, a new method for determining the viscosity of polymer solutions is reported. In the proposed method, the flow time of polymer solution at zero concentration, t0*, instead of the measured flow time of the pure solvent, was used to determine the viscosity of polymer solution. The reduced viscosity ηsp/C determined by the new method is proportional to concentration C even in an extremely dilute solution. The relative viscosity ηr vs. C plot also indicated clearly that t0*, instead of the measured flow time of the pure solvent, should be used for determining the viscosity of polymer solution. At low concentrations, the flow time of the polymer solution was proportional to C. As a result, t0* could be determined by extrapolating the flow time of the polymer solution to C=0.  相似文献   

17.
丙烯酰胺在聚乙二醇水溶液中聚合产品的微观形态   总被引:2,自引:0,他引:2  
采用偶氮类水溶性引发剂2,2′-偶氮二异丙基咪唑啉二盐酸盐(VA044)引发丙烯酰胺(AM)在聚乙二醇(PEG)水溶液中的双水相聚合;研究了引发剂、单体、聚乙二醇浓度及温度对最终产品中聚丙烯酰胺(PAM)液滴形态、尺寸的影响.随着引发剂浓度的增加,液滴由球状变为细长条状;随着温度的上升,球状液滴逐渐趋于条状,然后又重新趋于球状;在初始单体浓度较低时,PAM液滴滴径分布较窄,当其浓度增加后,滴径呈多峰分布;随着PEG浓度的增加,聚合物液滴趋于球状。  相似文献   

18.
Poly(ether-block-amide) membranes were made via casting a solution on a nonsolvent (water) surface. In this research, effects of different parameters such as ratio of solvent mixture (n-butanol/isopropanol), temperature, composition of coagulation bath (water) and polymer concentration, on quality of the thin film membranes were studied. The mechanism of membrane formation involves solution spreading, solvent–nonsolvent exchange, and partial evaporation of the solvent steps. Solvent- nonsolvent exchange is the main step in membrane formation and determines membrane morphology. However, at higher temperature of polymeric solution greater portion of solvent evaporates. The results showed that type of demixing process (mutual affinity between solvent and nonsolvent) has important role in film formation. Also, addition of solvent to the nonsolvent bath is effective on membrane morphology. The film quality enhances with increasing isopropanol ratio in the solvent mixture. This behavior can be related to increasing of solution surface tension, reduction of interfacial tension between solution and nonsolvent and delayed solvent-nonsolvent demixing. Uniform films were made at a temperature rang of 60–80 °C and a polymer concentration of 4–7 wt%. Morphology of the membranes was investigated with scanning electron micrograph (SEM). Pervaporation of ethyl butyrate/water mixtures was studied using these membranes and high separation performance was achieved. For ethyl butyrate/water mixtures, It was observed that both permeation flux and separation factor increase with increasing ethyl butyrate content in the feed. Increasing temperature in limited range studied resulted in decreasing separation factor and increasing permeation flux.  相似文献   

19.
 The evaporation of single triethyl phosphate (TEP) micro-droplets containing a high molecular weight polymer, poly(methyl methacrylate) (PMAA), was inves-tigated using an electrodynamic trap and light scattering measurements to explore the suppression of evaporation by the additive. Pure-component evaporation rates were measured to determine the vapor pressure over a range of temperatures, and the polymer was found to significantly decrease the evaporation rate. A numerical solution of the problem of simultaneous solvent evaporation and polymer diffusion within the droplet indicated a rapid build-up of PMMA at the surface of the drop, but vapor/liquid thermodynamic considerations alone do not account for the observed reduction in the evaporation rate for the droplets containing PMMA. After significant evaporation of TEP occurred, the ultra-low evaporation rate was measured using changes in the Raman spectra associated with morphology-dependent resonances. The evaporation in this regime appears to be controlled by the rate of solvent molecules diffusing through the polymer matrix. Received: 17 June 1997 Accepted: 24 October 1997  相似文献   

20.
The condensation of water vapor on a volatile polymeric solution leads to a porous surface after evaporation of both solvent and water. However, the stabilization of the water microdroplet is of great importance, which can be achieved using specific polymer or adding a third substance to the polymer solution. Short chain alcohols (methanol, ethanol, and n‐propanol) are utilized to fabricate a self‐assembled porous honeycomb film of linear, low molecular weight polystyrene using the breath figure technique. A combination of breath figure processing and the effect of alcohol on a water droplet can stabilize the pattern and make pores on the surface of the polymer film. The quality of the porous honeycomb film is strongly dependent on the type of alcohols and the concentration of polymer. In a specific range of polymer and alcohol concentration, pores cover all the surface of the polymer film. This method offers the possibility of producing a honeycomb structure with no trace of additive residual after the fabrication process and avoiding polymer modification. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 709–718  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号