首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Pump-probe delayed ionization studies on phenylacetylene and benzonitrile in a supersonic beam reveal the production of a low-ionization-potential (approximately 5.7 eV) species lasting more than hundreds of microseconds after excitation to the S1 state. Excitation of the molecules was done with a frequency-doubled, Fourier transform-limited, pulse-amplified cw laser, and the rotationally resolved structure of the S1-S0 transition ensures that the excited molecules are monomers. Excited-state photoelectron spectroscopy shows that the long-lived species are formed during the light pulse but not by transfer from the fluorescing S1 population after the pulse, even though the S1 spectral signature is present in the long-lived action spectrum. This behavior differs greatly from that found in benzene and with most commonly held pictures of radiationless transitions in large molecules.  相似文献   

2.
The rotational spectra of the three carbon chain molecules vinyldiacetylene (hex-1-ene-3,5-diyne, C(6)H(4)), vinyltriacetylene (oct-1-ene-3,5,7-triyne, C8H4), and its cyano analog vinylcyanodiacetylene (1-cyanohex-5-ene-1,3-diyne, C7H3N) have been observed for the first time by Fourier transform microwave spectroscopy of a supersonic molecular beam. The molecules were observed as products of an electrical discharge through selected precursor mixtures: ethylene/diacetylene and vinylacetylene/diacetylene for the pure hydrocarbon molecules and vinylacetylene/cyanoacetylene for vinylcyanodiacetylene. The measurements yield precise sets of rotational constants that compare very well with theoretical constants obtained by quantum chemical calculations at the B3LYP/cc-pVTZ level of theory. Since these three carbon chains are similar in structure and composition to known astronomical molecules and because of their significant polarity, all three are candidates for radio astronomical detection.  相似文献   

3.
An experiment on chiral molecules that combines circular dichroism (CD) spectroscopy, mass‐selective detection by laser mass spectrometry (MS), and cooling of molecules by using a supersonic beam is presented. The combination of the former two techniques (CD–laser‐MS) is a new method to investigate chiral molecules and is now used by several research groups. Cooling in a supersonic beam supplies a substantial increase in spectroscopic resolution, a feature that has not yet been used in CD spectroscopy. In the experiments reported herein, a large variation in the electronic CD of carbonyl 3‐methylcyclopentanone was observed depending on the excited vibrational modes in the n→π* transition. This finding should be of interest for the detection of chiral molecules and for the theoretical understanding of the CD of vibronic bands. It is expected that this effect will show up in other chiral carbonyls because the n→π* transition is typical for the carbonyl group.  相似文献   

4.
The early history of microwave spectroscopy is reviewed. New directions in the field are indicated. These include: further extensions of coherent submillimeter wave spectroscopy, microwave spectroscopy of molecules in interstellar space, microwave-infrared laser double resonance, spectroscopy of ionized molecules and transient molecular radicals, studies of hydrogen-bonded molecular complexes and atom-molecule complexes, observations of “forbidden” rotational transitions in symmetric-top and spherical-top molecules, and new developments in high-temperature spectroscopy.  相似文献   

5.
UV laser excitation of cryogenic solids doped with cyanoethyne, HC(3)N, led to an in situ creation of longer carbon-nitrogen chains, namely HC(5)N, C(4)N(2), and C(6)N(2), heralded by their strong visible luminescence. HC(5)N and C(4)N(2) molecules can form, most probably, within HC(3)N aggregates linked by hydrogen bonds, while the reaction occurring between two isolated, photochemically created C(3)N radicals yields C(6)N(2). This latter species, dicyanobutadiyne, is easily detected in Ar, Kr, N(2), as well as in parahydrogen solids. The C(6)N(2) phosphorescence is identified here for the first time. The reported carbon chain coupling reactions in rigid environments are of interest for astrochemistry of interstellar ices.  相似文献   

6.
The nu 5 antisymmetric stretching vibration of 1 sigma+g C9 has been observed using direct infrared diode laser absorption spectroscopy of a pulsed supersonic cluster beam. Twenty-eight rovibrational transitions measured in the region of 2079-2081 cm-1 were assigned to this band. A combined least squares fit of these transitions with previously reported nu 6 transitions yielded the following molecular constants for the nu 5 band: nu 0 = 2 079.673 58(17) cm-1, B"= 0.014 321 4(10) cm-1, and B'=0.014 288 9(10) cm-1. The IR intensity of the nu 5 band relative to nu 6 was found to be 0.108 +/- 0.006. Theoretical predictions for the relative intensities vary widely depending upon the level of theory employed, and the experimental value reported here is in reasonable agreement only with the result obtained from the most sophisticated ab initio calculation considered (CCSD).  相似文献   

7.
Metal-benzene complexes of the form M(benzene)(n) (M = Ti, V, Fe, Co, Ni) are produced in the gas-phase environment of a molecular beam by laser vaporization in a pulsed nozzle cluster source. These complexes are photoionized with an ArF excimer laser, producing the corresponding cations. The respective mono- and dibenzene complex ions are isolated in an ion-trap mass spectrometer and studied with infrared resonance enhanced multiple-photon dissociation (IR-REMPD) spectroscopy using a tunable free electron laser. Photodissociation of all complexes occurs by the elimination of intact neutral benzene molecules, and this process is enhanced on resonances in the vibrational spectrum, making it possible to measure vibrational spectroscopy for size-selected complexes. Vibrational bands in the 600-1700 cm(-1) region are characteristic of the benzene molecular moiety with systematic shifts caused by the metal bonding. The spectra in this solvent-free environment exhibit periodic trends in band shifts and intensities relative to the free benzene molecule that varies with the metal. Density functional theory calculations are employed to investigate the structures, energetics, and vibrational frequencies of these complexes. The comparison between experiment and theory provides fascinating new insight into the bonding in these prototypical organometallic complexes.  相似文献   

8.
A novel laboratory technique is described, combining the use of supersonic expansion, laser excitation and small aromatic-rare gas van der Waals (vdW) clusters properties, which was developed to access the electronic absorption spectra of the polycyclic aromatic hydrocarbon (PAH) cations in the visible. It consists in preparing vdW complexes of the PAH molecule with a rare gas in a molecular beam, to photoionize it by resonant selective two-photon ionization, then to photodissociate this ionic complex by means of a delayed laser pulse in a time-of-flight mass spectrometer. The method is illustrated by presenting the visible spectra of the Naphthalene, Phenanthrene, Fluorene and Phenylacetylene cations. Such spectra can be unambiguously compared to the astronomical spectra of reddened stars, which exhibit the so-called diffuse interstellar bands (DIBs) in absorption. An interesting feature of the technique is its ability to measure the absolute absorption cross-sections. The large values of the oscillator strengths of the transitions, which are derived, are discussed in the astrophysical context which consists in considering that the PAH cations could be carriers for some of the DIBs.  相似文献   

9.
Benzene molecules were desorbed from an in vacuo aqueous liquid beam by direct irradiation of the beam with an IR laser tuned to the 2.85 μm absorption band of water. Spectroscopic interrogation of the desorbed benzene molecules was performed via 1 + 1 Resonance-Enhanced Multi-photon Ionisation (REMPI). Rotational contour analyses of the 6 vibronic transition of benzene were performed to determine the rotational temperature of those molecules ejected during the desorption event. At the peak of the desorption plume density, the rotational temperatures were found to be up to ~100 K lower than that recorded for molecules spontaneously evaporating from the liquid surface. At longer IR-UV laser delay times the benzene rotational temperatures are found to return to those observed following spontaneous evaporation. No evidence of IR desorbed neutral or cationic benzene-containing clusters was observed. However, ionic clusters were observed to be formed after REMPI of the benzene monomer. Analysis of the benzene intensity and that of post-REMPI formed clusters as a function of IR-UV delay shows that number density and local translational temperature vary along the desorption plume.  相似文献   

10.
Direct spectroscopy of a fast molecular ion beam offers many advantages over competing techniques, including the generality of the approach to any molecular ion, the complete elimination of spectral confusion due to neutral molecules, and the mass identification of individual spectral lines. The major challenge is the intrinsic weakness of absorption or dispersion signals resulting from the relatively low number density of ions in the beam. Direct spectroscopy of an ion beam was pioneered by Saykally and co-workers in the late 1980s, but has not been attempted since that time. Here, we present the design and construction of an ion beam spectrometer with several improvements over the Saykally design. The ion beam and its characterization have been improved by adopting recent advances in electrostatic optics, along with a time-of-flight mass spectrometer that can be used simultaneously with optical spectroscopy. As a proof of concept, a noise-immune cavity-enhanced optical heterodyne molecular spectroscopy (NICE-OHMS) setup with a noise equivalent absorption of ~2 × 10(-11) cm(-1) Hz(-1/2) has been used to observe several transitions of the Meinel 1-0 band of N(2) (+) with linewidths of ~120 MHz. An optical frequency comb has been used for absolute frequency calibration of transition frequencies to within ~8 MHz. This work represents the first direct spectroscopy of an electronic transition in an ion beam, and also represents a major step toward the development of routine infrared spectroscopy of rotationally cooled molecular ions.  相似文献   

11.
This paper presents results from investigations of chemically reacting flowfields and optical gain profiles in HF chemical laser media by infrared hyperspectral imaging. Subsonic and supersonic chemiluminescent F+H2 reacting flowfields, produced in high-fluence microwave-driven reactors, were imaged at a series of wavelengths, 2.6-3.1 microm, by a low-order, spectrally scanning Fabry-Perot interferometer mated to an infrared camera. The resulting hyperspectral data cubes define the spectral and spatial distributions of the emission. Spectrally resolved images at high spatial resolution were processed to determine spatial distributions of the excited-state concentrations of the product HF(v, J) molecules, as well as spatial distributions of small-signal gain on specific laser transitions. Additional high-resolution Fourier transform spectroscopy and spectral fitting analysis determined detailed excited-state distributions in the reacting flowfields. The measurements showed that energetic HF(v, J) state distributions were generated by both the supersonic and fast-flow subsonic mixing schemes. In particular, the subsonic reactor produced a spatially distributed field of inverted, near-nascent state populations, with small-signal gains near 2-3%/cm.  相似文献   

12.
The interstellar medium is of great interest to us as the place where stars and planets are born and from where, probably, the molecular precursors of life came to Earth. Astronomical observations, astrochemical modeling, and laboratory astrochemistry should go hand in hand to understand the chemical pathways to the formation of stars, planets, and biological molecules. We review here laboratory experiments devoted to investigations on the reaction dynamics of species of astrochemical interest at the temperatures of the interstellar medium and which were performed by using one of the most popular techniques in the field, CRESU. We discuss new technical developments and scientific ideas for CRESU, which, if realized, will bring us one step closer to understanding of the astrochemical history and the future of our universe.  相似文献   

13.
The study of the S1(1A1)<--S0(1A1) transition of benzo[g,h,i]perylene (BghiP, C22H12) in supersonic jets and solid rare gas matrices is reported. In the jet-cooled spectrum, the origin band position is located at 25,027.1+/-0.2 cm-1, the assignment being supported by the analysis of vibrational shifts and rotational band contours. Except for the origin band, which is weak, all bands are attributed to the fundamental excitation of nontotally symmetric b1 vibrational modes of S1. The intensity pattern is interpreted as a consequence of the weak oscillator strength of the electronic transition combined with intensity-borrowing through vibronic interaction between the S1(1A1) and S2(1B1) states. The spectra of the S1(1A1)<--S0(1A1) and S2(1B1)<--S0(1A1) transitions have also been measured for BghiP in solid neon and argon matrices. The comparison of the redshifts determined for either transition reveals that the polarizability of BghiP is larger in its S2 than in its S1 state. Bandwidths of 2.7 cm-1 measured in supersonic jets, which provide conditions relevant for astrophysics, are similar to those of most diffuse interstellar bands. The electronic transitions of BghiP are found to lie outside the ranges covered by present databases. From the comparison between experimental spectra and theoretical computations, it is concluded that the accuracy of empirical and ab initio approaches in predicting electronic energies is still not sufficient to identify astrophysically interesting candidates for spectroscopic laboratory studies.  相似文献   

14.
The polymorphism of three members of the homologous series hexa(p-alkoxyphenoxymethyl) benzene (benzene pizzanes) with 5, 6 and 7 carbons in the alkoxy chains and several of their deuteriated isotopomers have been investigated by differential scanning calorimetry, polarizing optical microscopy, X-ray diffraction and deuterium NMR spectroscopy. These homologues exhibit several solid phases and a high temperature M phase, which is isomorphic in the three homologues and whose nature is discussed. In the solid phases, the benzene cores of the molecules remain rigid, but the side chains are mobile, as reflected by rapid pi-flips of the benzene rings in the side chains. It is found that there are two types of such benzene rings, differing in the rates of flips. In the M phase the molecules undergo fast overall reorientation and the side chains are even more disordered than in the solid phases. However the X-ray measurements do not provide a clear cut determination as to whether this phase is crystalline or mesomorphic. Mixing of the benzene pizzanes with p-xylene yields lyomesophases, which appear to belong to the Dho class.  相似文献   

15.
A comparative study of carbon bonding states and Raman spectra is reported for amorphous diamondlike carbon films deposited using 120 fs and 30 ns pulsed laser ablation of graphite. The presence of sp(1) chains in femtosecond carbon films is confirmed by the appearance of a broad excitation band at 2000-2200 cm(-1) in UV-Raman spectra. Analysis of Raman spectra indicates that the concentrations of sp(1)-, sp(2)-, and sp(3)-bonded carbon are approximately 6%, approximately 43%, and approximately 51%, respectively, in carbon films prepared by femtosecond laser ablation. Using surface enhanced Raman spectroscopy, specific vibrational frequencies associated with polycumulene, polyyne, and trans-polyacetylene chains have been identified. The present study provides further insight into the composition and structure of tetrahedral carbon films containing both sp(2) clusters and sp(1) chains.  相似文献   

16.
CHFClI is among the more favorable molecules for parity violation (PV) measurements in molecules. Despite the fact that calculated PV effects are two orders of magnitude smaller than in some organometallic compounds, CHFClI displays interesting features which could make possible a new experimental PV test on this molecule. Indeed, ultrahigh resolution spectroscopy using an ultrastable CO(2) laser is favored by several intrinsic properties of this molecule. For example, the high vapor pressure of CHFClI allows investigation by supersonic beam spectroscopy. Indeed, the spectroscopic constants have been accurately determined by microwave and millimetre wave spectroscopy. This is important for the subsequent selection of an appropriate absorption band of CHFClI that could be brought to co?ncide with the absorption of CO(2). Partially resolved (+)- and (-)-CHFClI enantiomers with respectively 63.3 and 20.5% ee's have been recently prepared and analyzed by molecular recognition using chiral hosts called cryptophanes. Finally, the S-(+)/R-(-) absolute configuration was ascertained by vibrational circular dichro?sm (VCD) in the gas phase.  相似文献   

17.
The spatial confinement effects of shock wave on the expansion of a carbon plume induced by pulsed laser ablation of graphite in air and the enhancement of the plume emission were studied by optical emission spectroscopy and probe beam deflection measurements. A metal disk was set in the way of the ablation-generated shock wave to block and reflect the supersonically propagating shock wave. The reflected shock wave propagated backwards and confined the expanding plume. The optical emission of CN molecules was enhanced in contrast to the case without the block disk and the emission enhancement was dependent on the position of the disk. Based on the results of time-integrated and -resolved optical emission spectroscopy, and the time- and space-resolved probe beam deflection measurements, the processes occurring in the plume were discussed and the mechanisms responsible for the enhancement of molecular emission in the spatially confined plume were investigated.  相似文献   

18.
The conformational structure of short peptide chains in the gas phase is studied by laser spectroscopy of a series of protected dipeptides, Ac-Xxx-Phe-NH(2), Xxx=Gly, Ala, and Val. The combination of laser desorption with supersonic expansion enables us to vaporize the peptide molecules and cool them internally; IR/UV double resonance spectroscopy in comparison to density functional theory calculations on Ac-Gly-Phe-NH(2) permits us to identify and characterize the conformers populated in the supersonic expansion. Two main conformations, corresponding to secondary structures of proteins, are found to compete in the present experiments. One is composed of a doubly gamma-fold corresponding to the 2(7) ribbon structure. Topologically, this motif is very close to a beta-strand backbone conformation. The second conformation observed is the beta-turn, responsible for the chain reversal in proteins. It is characterized by a relatively weak hydrogen bond linking remote NH and CO groups of the molecule and leading to a ten-membered ring. The present gas phase experiment illustrates the intrinsic folding properties of the peptide chain and the robustness of the beta-turn structure, even in the absence of a solvent. The beta-turn population is found to vary significantly with the residues within the sequence; the Ac-Val-Phe-NH(2) peptide, with its two bulky side chains, exhibits the largest beta-turn population. This suggests that the intrinsic stabilities of the 2(7) ribbon and the beta-turn are very similar and that weakly polar interactions occurring between side chains can be a decisive factor capable of controlling the secondary structure.  相似文献   

19.
Gas phase C 6H 7 (+) and C 7H 9 (+) ions are studied with infrared photodissociation spectroscopy (IRPD) and the method of rare gas tagging. The ions are produced in a pulsed electric discharge supersonic expansion source from benzene or toluene precursors. We observe exclusively the formation of either the C 2 v benzenium ion (protonated benzene) or the para isomer of the toluenium ion (protonated toluene). The infrared spectral signatures associated with each ion are established between 750 and 3400 cm (-1). Comparing the gas phase spectrum of the benzenium ion to the spectrum obtained in a superacid matrix [ Perkampus, H. H.; Baumgarten, E. Angew. Chem. Int. Ed. 1964, 3, 776 ], we find that the C 2 v structure of the gas phase species is minimally affected by the matrix environment. An intense band near 1610 cm (-1) is observed for both ions and is indicative of the allylic pi-electron density associated with the six membered ring in these systems. This spectral signature, also observed for alkyl substituted benzenium ions and protonated naphthalene, compares favorably with the interstellar, unidentified infrared emission band near 6.2 microm (1613 cm (-1)).  相似文献   

20.
Intracavity cw dye laser quenching has been used to observe extremely weak optical transitions near 6300 Å: the 2.0 band of the red atmospheric system of molecular oxygen and the 6,0 overtone band of HCl. Sensitivity tests indicate that band systems with oscillator strengths less than 10?2 can be detected readily, thereby suggesting routine use for high-resolution optical spectroscopy of forbidden transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号