首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过化学浴沉积的方法制备了一种高SERS活性和重复性的银薄膜衬底。分别采用扫描电子显微镜和拉曼光谱研究了沉积时间对银薄膜微观形貌和SERS活性的影响, 优化的沉积时间为120分钟。利用优化的银薄膜衬底, 可以检测到10-9 M 的罗丹明分子的SERS谱图, 表明该银薄膜衬底具有很高的SERS活性。相同实验条件下, 在一片银薄膜衬底上任意选择16个点测试R6G的SERS谱图。分别计算了R6G的8个特征峰16次检测的相对标准偏差, 最大相对标准偏差小于13% 。实验结果表明, 该衬底具有很好的重复性, 可应用于SERS 的定量分析。采用优化的银薄膜衬底检测了不同浓度的芥子气及其水解产物硫二甘醇。分别结合芥子气和硫二甘醇的常规拉曼光谱和文献报道, 对它们的SERS谱图进行了指认和归属。20分钟内, 对芥子气和硫二甘醇的检测限可分别达到320 ppm和1 ppm (g/g)。  相似文献   

2.
本文提出了一种新型的基于银修饰的氨基改性粉末多孔材料的表面增强拉曼光谱(SERS)检测方法,以乐果为探针分子,分析了银溶胶的量和反应时间对基底SERS活性的影响。乐果和水胺硫磷在以银溶胶为基底时,分别只能检测到100mg/L和7mg/L,而以银修饰的氨基改性粉末多孔材料为基底时,乐果和水胺硫磷的最低检测浓度分别达到0.5mg/L和0.14mg/L,说明该基底具有很好的增强效果。此外,检测低浓度下乐果和水胺硫磷的混合农药溶液,各农药的特征峰在谱图中仍然能清晰可辨。根据实验结果可以推测,银修饰的氨基改性粉末多孔材料作为SERS基底,可以有效地应用于有机磷农药残留的检测。  相似文献   

3.
基于生化分子检测技术高灵敏度、小型化的需求,近些年国内外相继提出一种用光纤表面增强拉曼散射(SERS)探针进行拉曼信号检测的方法,此检测方法不仅能实现远端检测和原位检测功能,而且具有很高的灵敏度.本文通过简单的管式腐蚀法制成一种锥柱组合型光纤探针,并通过静电引力将银纳米颗粒结合到硅烷化的二氧化硅光纤探针表面.用罗丹明6G(R6G)溶液的检测极限来表征该光纤探针的活性和灵敏度,通过优化银纳米颗粒的自组装时间为30 min,光纤探针直径为62μm,制备出高灵敏度的光纤SERS探针,远端检测R6G的检测极限可达到10~(-14)mol/L.因此,该光纤SERS探针在分子检测方面有巨大的应用前景.  相似文献   

4.
尿液中葡萄糖的高灵敏度、特异性定量检测在临床诊断中具有十分重要的意义。本工作在基于表面增强拉曼散射光谱(SERS)法的尿液葡萄糖定量检测中,采用4-氰基苯硼酸(4-CPBA)为二级糖探针。此探针不需要与SERS活性基底结合,并且氰基(CN)的特征峰2226cm-1位于SERS光谱的生物寂静区(1800~2800cm-1),从而避免了其他内源性生物分子的干扰。本方法对葡萄糖分子具有高度选择性,可有效避免尿液中果糖、半乳糖等其他糖类物质的干扰。本实验方法成功实现了尿糖的特异性检测,检测限低至10nM,并检测出了轻微糖尿病患者尿液中的微量葡萄糖。实验结果表明,本方法为尿糖检测提供了一种专一性强,灵敏度高的分析手段,为后续定量检测提供了有力的工具。  相似文献   

5.
利用光化学法在光纤尖端快速沉积银纳米粒子构建活性层,通过银纳米粒子与探针分子4-巯基吡啶分子中的巯基吸附作用,将探针分子组装在银膜上制备SERS光纤传感器。检测光纤活性端在不同pH缓冲液中探针分子的SERS光谱,对比分析其SERS光谱特征峰强度及拉曼频移的差异,讨论探针分子在不同pH值下结构的变化、与银膜之间夹角的变化,并通过重复实验证明这种SERS光纤pH传感器在实际检测中的应用价值。  相似文献   

6.
SERS作为一种振动光谱,具有高灵敏度、高选择性、快速无损检测等优点,并且能提供丰富的分子指纹信息,广泛应用于分析化学、材料科学、生命科学等领域~([1])。因此,探究具有高SERS活性的基底成为了研究热点。半导体材料TiO_2由于其化学性质稳定、易得、无毒且具有较好的生物相容性,使其成为人们备受关注的SERS基底。然而,TiO_2相对较弱的SERS活性限制了其在SERS领域的发展。同时,SERS基底的聚集状态难于控制,直接影响其SERS性能的可重现性和稳定性。相关研究表明,对半导体TiO_2的适当改性可有效改善其表面活性,进而提高其SERS活性~([2])。因此,本文开展了强吸附能力的还原氧化石墨烯(rGO)和磁性Fe_3O_4修饰的TiO_2(rGO-TiO_2-Fe_3O_4)作为新型SERS活性基底的研究,实现了优良的SERS性能。磁性rGO-TiO_2-Fe_3O_4基底容易与探针分子分离,便于检测,对4-MBA分子的最低可检测浓度为10-9 mol·L~(-1),显著低于纯TiO_2基底(1.0×10~(-5) mol·L~(-1))。  相似文献   

7.
表面增强拉曼散射(SERS)技术可有效增强样品分子的拉曼信号,对生物分子检测具有较高的灵敏性,因此在生化方面有着许多潜在的应用.而将空芯微结构光纤与SERS技术相结合不仅能够远端实时、分布式地检测,同时还可以增加光场与待测物的有效作用面积,减少传统光纤探针无法避免的石英背景信号等问题.本文基于空芯微结构光纤进行SERS探针的制备及性能测试研究,利用真空物理溅射法在空芯光纤内镀纳米Ag膜,从而制备成SERS探针,通过实验检测不同浓度的罗丹明6G (R6G)酒精溶液的拉曼信号.结果表明,在探针的近端正面成功探测到了浓度低至10~(-9)mol/L的R6G拉曼信号,在探针的远端反面探测到的浓度可小于10~(-6)mol/L.该实验结果为研究高灵敏度的SERS探针提供了一种新的手段.  相似文献   

8.
表面增强拉曼光谱(SERS)是目前最灵敏的分析技术之一,广泛应用于生命科学、材料科学、环境科学及分析化学等领域。SERS基底的特性决定了该技术的实际应用范围,是推动该技术发展的关键,高活性SERS基底的制备已经逐渐成为SERS研究领域的热点。为了获得最佳的拉曼信号,对具有特殊特性的SERS活性基底的需求一直很大。柔性SERS基底因具有良好的柔韧性,3D支架结构和表面可控的孔径大小等独特优势,在检测化合物和细菌等方面有很好的应用价值。Nylon(尼龙)柔性膜表面具有分级及多孔交错排列3D结构的特点,将固相萃取装置与特殊材料Nylon柔性膜相结合,通过改变金纳米颗粒的附着量以及金纳米颗粒与膜结合次数,制备了高SERS活性的金纳米-Nylon(Au-Nylon)柔性膜基底。研究表明,金纳米颗粒能很好地附着在Nylon纤维上,纳米颗粒与Nylon柔性膜表面等离子共振耦合作用,形成金纳米颗粒与Nylon纤维的复合体,Au-Nylon柔性膜基底的等离子共振吸收峰发生蓝移。首次处理后的Nylon纤维与其所附着的金纳米颗粒形成新的活性截留层,有助于使再次处理时金颗粒更好地附着在柔性膜表面,产生SERS“热点”效应,提高其SERS性能。利用结晶紫(CV)作为SERS探针分子,对Au-Nylon柔性膜基底SERS性能进行分析,发现CV探针分子在Au-Nylon柔性膜基底上的SERS强度随金纳米颗粒的附着量以及金纳米颗粒与膜结合次数而变化。对于面积为1 cm2的Au-Nylon柔性膜基底,当单次过滤金溶胶1 mL,与膜结合2次,总结合量2 mL时,CV探针分子的SERS信号最强,SERS活性最强。采用Au-Nylon柔性膜基底对浓度为2.5×10-5,1×10-5,1×10-6,5×10-7及1×10-7 mol·L-1的CV溶液进行的SERS检测,发现Au-Nylon柔性膜基底对CV探针分子检测极限达1×10-6 mol·L-1,增强因子达到1.0×104。此外,Au-Nylon柔性膜基底均匀性较好,相对平均偏差为11.8%。Au-Nylon柔性膜基底在微生物检测中,仍具有良好SERS活性,对金黄色葡萄球菌的SERS增强效果优于金溶胶。由此可见,研究中制备的Au-Nylon柔性具有良好的均一性,并具有较好的SERS活性,该方法简单且易批量制备,无论在化合物检测还是微生物检测中都具有良好的实际应用价值。  相似文献   

9.
利用表面增强拉曼 (SERS)技术对光纤表面进行修饰 ,构造了表面增强光纤拉曼光谱传感器。选取了几个有代表性的分子作为检测样品 ,得到了低浓度样品的SERS光谱。结果表明 ,可以将制备SERS活性基底的方法移植到光纤表面来制备SERS活性光纤探针。  相似文献   

10.
过氧亚硝基阴离子(ONOO-)是一种重要的活性氮/氧物种,具有极强的氧化和硝化能力,能与生物体内的硫醇、蛋白质、脂质和DNA等多种生物分子发生反应,产生一系列有害的生化效应,如氧化应激和炎症等,导致细胞死亡和器官损伤。因此,检测生物体内的ONOO-对于疾病的早期诊断具有重要意义。基于此,我们利用3-甲氧基苯硼酸频那醇酯(3-MAPE)修饰金纳米颗粒(Au NPs)制备了高选择性传感ONOO-的表面增强拉曼光谱传感器(Au NPs/3-MAPE)。该传感器的原理是ONOO-可以将探针上的硼酸基团氧化成羟基,从而引发传感器的SERS光谱改变。结果表明,该传感器对ONOO-的选择性高,具有优异的灵敏度和检测限,检测限低至0.48μmol·L-1。该传感器可以满足对ONOO-的检测需求,具有很高的应用潜力。  相似文献   

11.
随着光纤制备工艺以及纳米材料制备技术的发展,光纤探针已成为一种新型的表面增强拉曼散射(SERS)基底,通过在普通单模光纤或多模光纤上制备不同的结构并修饰相应的纳米材料,可以得到多种类型的光纤表面增强拉曼散射探针,并实现较好的检测效果。但受限于光纤本身的结构,普通光纤仅能利用端面或侧表面提供拉曼检测的“热点”区域,限制了其SERS性能的进一步提高。因此制备了大孔柚子型微结构光纤(MSF)表面增强拉曼散射(SERS)探针,其中大孔柚子型MSF SERS探针结构通过一段阶跃多模光纤与柚子型微结构光纤熔接制得。实验分别对自制的纳米银溶胶基底以及大孔柚子型MSF SERS探针的SERS性能进行检测。采用溶胶自组装法制备负载银纳米颗粒的MSF SERS探针,通过控制自组装时间制备不同光纤SERS探针(Ag/MSF-x,其中x为自组装时间,分别为15、 30、 45、 60 min)。采用溶液检测方法,利用Ag/MSF-x探针对10-3 mol·L-1的亚甲基蓝(MB)探针分子进行检测,通过比较相同条件下的增强效果筛选得到Ag/MSF-45探针。为进一步检...  相似文献   

12.
前列腺特异性抗原(PSA)是前列腺癌的血清生物标志物,对其含量的测定在前列腺癌的早期诊断和治疗中十分重要。表面增强拉曼光谱(SERS)技术,拥有极高的灵敏度和极强的选择性,在抗体抗原检测研究中逐渐受到重视。研究提出了一种基于SERS的生物传感器方法对PSA进行定量检测。使用溅射手段制备了均匀的SERS活性基底,使用PSA适配体代替抗体进行PSA识别,通过探针分子亚甲基蓝(MB)信号的降低来进行PSA检测,为PSA检测和诊断提供了方法。  相似文献   

13.
加入增敏剂AgNO3和NaCl,在银纳米棒(AgNRs)表面吸附了较牢固的AgCl并形成高SERS活性的AgNR/AgCl溶胶基底,维多利亚蓝B(VBB)分子探针在1 611 cm-1处有一较强的SERS峰。用VBB做大肠杆菌(EC)的染色剂,使染色的大肠杆菌具备VBB分子探针的SERS特性,即VBB染色大肠杆菌也在1 611 cm-1处有一较强的SERS峰。在最优条件下,该SERS峰强与大肠杆菌浓度在5×106~3×109 cfu·mL-1 范围内成正比,检出限为2×106 cfu·mL-1,用于水样和饮料中大肠杆菌的分析,具有简便、快速、灵敏等优点。  相似文献   

14.
提出了一种基于银修饰的微腔型光纤表面增强拉曼散射(SERS)探针,采用湿法检测,将光纤SERS探针直接放入待测溶液中,以罗丹明6G(R6G)溶液为探针分子,对所制备的光纤SERS探针进行远端实验性能研究。利用氢氟酸化学腐蚀的方法制备了一种微腔型光纤结构,通过控制氢氟酸的腐蚀时间得到了一系列不同腐蚀时间、不同微腔长度的光纤结构。实验研究了光纤结构的微腔长度对光纤SERS探针性能的影响,以浓度为10-3 mol·L-1的R6G溶液为探针分子,通过不断地优化纳米银溶胶与R6G溶液的混合顺序及比例,采用裸光纤微腔结构对混合溶液进行拉曼检测,发现当混合溶液的混合顺序及比例为先后混合等体积的纳米银溶胶和R6G溶液时,此时得到的混合溶液的拉曼信号增强性能最佳。利用得到的混合溶液去寻找拉曼信号增强效果最高时光纤微腔结构的结构参数,实验结果表明,在相同的实验条件下,当光纤放入氢氟酸中腐蚀时间为5 min时,此时光纤微腔结构的拉曼信号增强效果最佳。在显微镜下测量的多组腐蚀时间为5 min的光纤,其微腔长度平均约为81 μm。对得到的光纤微腔结构,采用制备过程可控的磁控溅射技术制备了一系列银纳米薄膜/多模光纤(Ag/MMF)的复合材料。当磁控溅射时间为10 min时,获得了光纤SERS探针(Ag/MMF-10)。实验以去离子水配制了不同浓度的R6G溶液,以不同浓度的R6G溶液为探针分子,Ag/MMF-10探针的远端检测限(LOD)低至10-7 mol·L-1。该光纤SERS探针拉曼信号的再现性光谱检测中显示各个特征峰的相对标准偏差(RSD)均小于10%。同时,该光纤SERS探针对浓度为10-6 mol·L-1的R6G溶液的增强因子(AEF)可高达2.64×106。实验结果表明所制备的银修饰的光纤SERS基底具有较高的灵敏度和良好的再现性。因此,该光纤SERS探针在生物医学检测、农残化学分析等痕量检测方面有潜在的应用价值。  相似文献   

15.
以均匀有序的聚丙烯腈(PAN)纳米柱阵列薄膜为基材,结合水热法以及离子溅射方法制备大面积有序的Fe2O3@Ag纳米棒复合结构阵列。利用扫描电子显微镜、透射电子显微镜、能谱仪、紫外可见光吸收光谱仪、X射线衍射仪以及拉曼光谱仪对复合材料进行表征。以罗丹明6G(R6G)和4-氨基苯硫酚(4-ATP)为探针分子,对结构阵列的表面增强拉曼散射(SERS)性能进行研究。结果表明,制备的结构阵列具有较高的SERS活性和信号均匀性,对R6G和4-ATP可以实现10-10 M和10-9 M低浓度探测。以10-6 M的4-ATP为探针分子,计算得到基底的SERS信号相对标准偏差(RSD)值为7.5%。所制备的复合结构在SERS检测中具有良好的潜力。  相似文献   

16.
借助水/油两相界面自组装形成致密排列且有序稳定的Au@SiO2单层膜,通过膜层层转移到固相基底的方法制备了具有不同纳米粒子层数的SERS基底,成功在同一硅片上制备了六层Au@SiO2纳米粒子膜,研究了不同膜层数与SERS信号的关系,结合SERS成像技术可测定纳米粒子膜在基底上的层数。通过改变探针分子在多层纳米粒子膜上的位置,研究了纳米粒子膜间的耦合增强效应。研究表明,同一层膜表面探针分子的SERS信号分布均匀,随膜层数的增加,SERS信号明显增强,当膜层达到第五层时探针分子的SERS信号最强,之后几乎保持不变,说明SERS信号主要来源于表层的五层纳米粒子膜,位于五层以下纳米粒子对SERS效应并没有贡献。固定探针分子仅吸附于底层纳米粒子表面,当再覆盖一层裸露纳米粒子膜后,SERS信号达到最大,其主要源于热点的增强作用占主导地位,而覆盖至第三层时,SERS信号反而出现微小减弱,这是由于多层的Au@SiO2纳米粒子膜影响了激发光以及信号的传播,但粒子间产生的耦合效应仍对底层的探针分子起增强作用,当覆盖至五层Au@SiO2膜后,探针分子SERS信号完全消失,由此说明纳米粒子单层膜控制在三层以内可有效检测底层及以上所有纳米粒子上吸附分子的SERS信号,该结果为制备理想SERS基底提供了实验依据。  相似文献   

17.
本研究建立了表面增强拉曼光谱快速检测糕点及白酒中糖精钠的方法。基于溶剂萃取法,利用二氯甲烷对糕点及白酒中的糖精钠进行提取,制备金溶胶后将其浓缩作为增强基底,并优化增强基底的条件来获得最佳拉曼信号。结果表明,在1.0 mol/L稀盐酸的酸性条件下用二氯甲烷提取糖精钠,再用0.1 mol/L氢氧化钠溶液适当调节体系酸度后将糖精钠从二氯甲烷中反萃取出来,可获得最高提取效率;将1.0 mol/L稀硝酸作为凝聚剂使浓缩金溶胶与糖精钠分子紧密结合后检测,可获得响应最强的SERS信号。糖精钠在糕点和白酒中的的最低检测浓度分别为0.5 mg/kg和0.5 mg/L,回收率在75%~120%,RSD(n=5)在3.3%~8.6%,该方法灵敏度高,特异性强,前处理方式简单,实现了糕点及白酒中糖精钠的快速检测。  相似文献   

18.
设计了一种基于AgNPs-AuNPs的核-卫星纳米结构检测水样中多环芳烃芘的比色和SERS双通道传感系统。首先将单巯基β-环糊精修饰到纳米金颗粒和纳米银颗粒的表面。受益于氧化态的四甲基联苯胺的触发,当体系中存在多环芳烃芘时,纳米颗粒会自组装形成AgNPs-pyrene-AuNPs的核-卫星结构。芘分子在其中充当分子桥的作用,拉近纳米粒子距离,使得纳米粒子发生一定的聚集。所以芘分子的个数直接影响AgNPs-pyrene-AuNPs的核-卫星结构数量,使溶液颜色发生变化,能够通过目测法建立溶液颜色与芘浓度的关系;组装形成的的核-卫星结构具有非常丰富的“热点”而表现出较强的表面增强拉曼光谱(SERS)活性,可通过SERS方法实现芘分子的高灵敏高特异检测。此结构可通过比色法和SERS方法实现水中芘的高灵敏高特异性检测。该方法可以在25 min内快速完成微量芘的检测,比色法对芘的检出限为3.4μmol·L-1, SERS法的检出限为0.42μmol·L-1。根据上述原理,基于AgNPs-PAHs-AuNPs核-卫星结构的SERS传感器可用来检测水样中的...  相似文献   

19.
将微孔滤膜浸入柠檬酸三钠和硝酸银混合液通过微波加热银化制得一种新型、高活性的SERS活性基底。以结晶紫为探针分子, 采用便携式拉曼光谱仪检测其SERS活性, 同时探讨浸泡时间与SERS活性的变化关系。实验结果显示, 在浸泡2~8小时区间, 基底的SERS活性随着浸泡时间的增加而增强。  相似文献   

20.
将银纳米颗粒覆盖在覆有铟锡氧化物的导电玻璃上,可以将其作为一种新型的表面增强拉曼散射(SERS)活性基底。将三种羟基苯甲酸分子作为探针分子在这种新的基底上进行检测,得到了很好的SERS信号,从中可反映出大量分子振动信息  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号