首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Partyka DV  Holm RH 《Inorganic chemistry》2004,43(26):8609-8616
Reactions of [MO(4)](2)(-) (M = Mo, W) with certain carbon and silicon electrophiles were investigated in acetonitrile in order to produce species of potential utility in the synthesis of analogues of the sites in the xanthine oxidoreductase enzyme family. Silylation of [MoO(4)](2)(-) affords [MoO(3)(OSiPh(3))](1)(-), which with Ph(3)SiSH is converted to [MoO(2)S(OSiPh(3))](1)(-). Reaction with (Ph(3)C)(PF(6))/HS(-) yields the tetrahedral monosulfido species [MO(3)S](2)(-), previously obtained only from the aqueous system [MO(4)](2)(-)/H(2)S. Dithiolene chelate rings are readily introduced upon reaction with 1,2-C(6)H(4)(SSiMe(3))(2), leading to the square pyramidal trioxo complexes [MO(3)(bdt)](2)(-), a previously unknown dithiolene molecular type. Further ring insertion occurs upon reaction of [WO(3)(bdt)](2)(-) with 1,2-C(6)H(4)(SSiMe(3))(2), giving [WO(2)(bdt)(2)](2)(-). Related reactions occur with [ReO(4)](1)(-). Treatment with 1 equiv of (Me(3)Si)(2)S produces [ReO(3)S](1)(-); with 3 equiv of 1,2-C(6)H(4)(SSiMe(3))(2), [ReO(bdt)(2)](1)(-) is obtained with concomitant Re(VII) --> Re(V) reduction. X-ray structures are reported for [MO(3)S](z)(-) (M = Mo, W, z = 2; M = Re, z = 1), [MO(3)(bdt)](2)(-), and [WO(2)(OSiPh(3))(bdt)](1)(-), a silylation product of [WO(3)(bdt)](2)(-). [MoO(3)(bdt)](2)(-) is related to the site of inactive sulfite oxidase, and [WO(2)(OSiPh(3))(bdt)](1)(-) should closely approximate the metric features of the [(dithiolene)MoO(2)(OH)] site in inactive aldehyde/xanthine oxidoreductase. This work provides convenient syntheses of known and new derivatives of tetraoxometalates, among which is entry to a unique class of oxo-monodithiolene complexes.  相似文献   

2.
The active sites of the xanthine oxidase and sulfite oxidase enzyme families contain one pterin-dithiolene cofactor ligand bound to a molybdenum atom. Consequently, monodithiolene molybdenum complexes have been sought by exploratory synthesis for structural and reactivity studies. Reaction of [MoO(S(2)C(2)Me(2))(2)](1-) or [MoO(bdt)(2)](1-) with PhSeCl results in removal of one dithiolate ligand and formation of [MoOCl(2)(S(2)C(2)Me(2))](1-) (1) or [MoOCl(2)(bdt)](1-) (2), which undergoes ligand substitution reactions to form other monodithiolene complexes [MoO(2-AdS)(2)(S(2)C(2)Me(2))](1-) (3), [MoO(SR)(2)(bdt)](1-) (R = 2-Ad (4), 2,4,6-Pr(i)(3)C(6)H(2) (5)), and [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (6) (Ad = 2-adamantyl, bdt = benzene-1,2-dithiolate). These complexes have square pyramidal structures with apical oxo ligands, exhibit rhombic EPR spectra, and 3-5 are electrochemically reducible to Mo(IV)O species. Complexes 1-6 constitute the first examples of five-coordinate monodithiolene Mo(V)O complexes; 6 approaches the proposed structure of the high-pH form of sulfite oxidase. Treatment of [MoO(2)(OSiPh(3))(2)] with Li(2)(bdt) in THF affords [MoO(2)(OSiPh(3))(bdt)](1-) (8). Reaction of 8 with 2,4,6-Pr(i)(3)C(6)H(2)SH in acetonitrile gives [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](1-) (9, 55%). Complexes 8 and 9 are square pyramidal with apical and basal oxo ligands. With one dithiolene and one thiolate ligand of a square pyramidal Mo(VI)O(2)S(3) coordination unit, 9 closely resembles the oxidized sites in sulfite oxidase and assimilatory nitrate reductase as deduced from crystallography (sulfite oxidase) and Mo EXAFS. The complex is the first structural analogue of the active sites in fully oxidized members of the sulfite oxidase family. This work provides a starting point for the development of both structural and reactivity analogues of members of this family.  相似文献   

3.
X-ray absorption spectroscopy (XAS) (edge and extended X-ray absorption fine structure (EXAFS)) has been applied to the characterization of three molybdenum(V,VI) monodithiolene complexes with unidentate coligands, [MoO(SC(6)H(2)-2,4,6-Pr(i)()(3))(2)(bdt)](-) (1), [MoOCl(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](-) (2), and [MoO(2)(SC(6)H(2)-2,4,6-Pr(i)(3))(bdt)](-) (3) (bdt = benzene-1,2-dithiolate). These complexes are related to the active site in the xanthine oxidase and sulfite oxidase families and, as in the enzyme sites, bind monodentate thiolate. By comparison to the data of crystalline oxidized chicken sulfite oxidase, it is shown that complex 3, whose thiolate simulates binding by the highly conserved cysteine, is an accurate structural analogue of the oxidized site of this enzyme. Normalized edge spectra, EXAFS data, Fourier transforms, and GNXAS-based fit results are presented. As in earlier studies, this provides characterization of new analogue complexes by XAS to facilitate identification of related sites in proteins.  相似文献   

4.
Electron paramagnetic resonance spectra of homoleptic and mixed-ligand molybdenum tris(dithiolene) complex anions [Mo(tfd)(m)(bdt)(n)](-) (n + m = 3; bdt = S(2)C(6)H(4); tfd = S(2)C(2)(CF(3))(2)) reveal that the spin density has mixed metal-ligand character with more ligand-based spin for [Mo(tfd)(3)](-) and a higher degree of metal-based spin for [Mo(bdt)(3)](-): the magnitude of the isotropic (95,97)Mo hyperfine interaction increases continuously, by a factor of 2.5, on going from the former to the latter. The mixed complexes fall in between, and the metal character of the spin increases with the bdt content. The experiments were corroborated by density functional theory computations, which reproduce this steady increase in metal-based character.  相似文献   

5.
The synthesis and characterization of two coordination polymers, {Cu(I)[Mo(V)(bdt)(3)]·0.5Et(2)O}(n) (1·0.5Et(2)O, bdt: o-benzenedithiolato) and {Ag(I)[Mo(V)(bdt)(3)]}(n) (2), composed of redox-active [Mo(V)(bdt)(3)](-) metalloligand with Cu(I) and Ag(I) ions are reported. The complexation reactions of [Mo(V)(bdt)(3)](-) with Cu(II)(ClO(4))(2) or Ag(I)ClO(4) commonly lead to the formation of one-dimensional (1-D) coordination polymers. The presence of Cu(I) in 1·0.5Et(2)O strongly indicates that the Cu(II) ion is reduced during the complexation reaction with [Mo(V)(bdt)(3)](-), which acts as an electron donor. The total dimensionalities of the assembled structures of 1·0.5Et(2)O and 2 are significantly different and related to the type of additional metal ions, Cu(I) and Ag(I). In contrast to the isolated 1-D chain structure of 1·0.5Et(2)O, complex 2 has a three-dimensional (3-D) assembled structure constructed from additional π-π stacking interactions between adjacent [Mo(V)(bdt)(3)](-) moieties. These structural differences influence the solubility of the complexes in organic solvents; complex 1·0.5Et(2)O is soluble as origomeric species in highly polar solvents, while 2 is insoluble in organic solvents and water. Coordination polymers 1·0.5Et(2)O and 2 were investigated by UV-vis spectroscopy in the solid state, and that in solution together with their electrochemical properties were also investigated for 1 because of its higher solubility in polar organic solvents. Complex 1·0.5Et(2)O dissolved in CH(3)CN demonstrates concentration-dependent UV-vis spectra supporting the presence of coordinative interactions between [Mo(V)(bdt)(3)](-) moieties and Cu(I) ions to create the origomeric species even in solutions, an observation that is supported also by electrochemical experiments.  相似文献   

6.
Mono(dithiolene)sulfidomolybdenum(IV) complexes, [MoS(S4)(bdt)](2-) (2) and [MoS(S4)(bdtCl2)](2-) (3) (1,2-benzenedithiolate = bdt, 3,6-dichloro-1,2-benzenedithiolate = bdtCl2), were prepared by the substitution reaction of a tetrasulfido ligand in known [MoS(S4)2](2-) (1) with the corresponding dithiol. Complexes 2 and 3 were irreversibly oxidized to give bis(mu-sulfido) dimolybdenum(V) species, {[MoS(bdt)]2(mu-S)2}(2-) (4) and {[MoS(bdtCl2)]2(mu-S)2}(2-) (5), in aerobic acetonitrile. Mono(dithiolene)oxomolybdenum(IV) complexes, [MoO(S4)(bdt)](2-) (7) and [MoO(S4)(bdtCl2)](2-) (8), that are oxo derivatives of 2 and 3 were also synthesized from a known [MoO(S4)2](2-) (6) of an oxo derivative of 1 and the corresponding dithiol. Further, the electrophilic addition of dimethyl acetylenedicarboxylate to 7 gave [MoO(bdt)(S2C2(COOMe)2)](2-) (9), and ligand substitution of the tetrasulfido group of 7 with bdt and bdtCl2 yielded [MoO(bdt)2](2-) ( 10) and [MoO(bdt)(bdtCl2)](2-) (11), respectively. New sulfido/oxo molybdenum complexes were characterized by (1)H NMR, IR, ESI-MS, Raman, and UV-vis spectroscopies; cyclic voltammetry; and elemental analysis, and crystal structures of 2, 3, 5, 7, and 8 were determined by X-ray analysis.  相似文献   

7.
Yang F  Li B  Xu W  Li G  Zhou Q  Hua J  Shi Z  Feng S 《Inorganic chemistry》2012,51(12):6813-6820
Here, we report two three-dimensional metal-organic frameworks of formula [Co(2)(4-ptz)(2)(bpp)(N(3))(2)](n) (1) and [Co(3)(OH)(2)(bdt)(2)(bpp)(2)(H(2)O)(2)](n) (2), which were synthesized by hydrothermal reaction from the respective tetrazole ligand (5-(4-pyridyl)tetrazole (4-H-ptz) for 1 and 5,5'-(1,4-phenylene)bis(1-H-tetrazole) (H(2)bdt) for 2), long and flexible pyridyl-containing ligand 1,3-bi(4-pyridyl)propane (bpp), NaN(3), and CoCl(2). Both 1 and 2 consist of well-isolated one-dimensional cobalt(II) alternating chains further linked by the bpp and/or the tetrazole ligand, while their chain structures are totally different. The chains of 1 are formed by Co(2+) ions bridged by single μ-EE-N(3) and triple (μ-EO-N(3))(μ-tetrazole)(2) alternately, whereas the Co(2+) ions are bridged by μ(3)-OH to form Co(3)(OH)(2) chains in compound 2. Magnetic measurements demonstrate that compound 1 contains an alternating antiferromagnetic (AF)/ferromagnetic (FM) ferrimagnetic chain, while compound 2 exhibits the coexistence of spin canting, slow magnetic dynamics, and finite-size effect, with alternating AF/AF/FM ferrimagnetic chains.  相似文献   

8.
Reaction of VO(acac)(2) with 1,2-dithiols in the presence of triethylamine gives pentacoordinate oxovanadium complexes [HNEt(3)](2)[VO(bdt)(2)] (1), [HNEt(3)](2)[VO(tdt)(2)] (2), and [HNEt(3)](2)[VO(bdtCl(2))(2)] (3) (where H(2)bdt = 1,2-benzenedithiol, H(2)tdt = 3,4-toluenedithiol, and H(2)bdtCl(2) = 3,6-dichloro-1,2-benzenedithiol). Compounds 1-3 have been characterized by IR, UV/visible, EPR, and mass spectroscopies. The X-ray crystal stuctures of 1 and 2 show hydrogen-bonding interactions between the terminal oxo atom and triethylammonium counterions and between ligand sulfur atoms and the counterions. These interactions are comparable with those found at the active sites of mononuclear molybdenum enzymes.  相似文献   

9.
Reported here are self-exchange reactions between iron 2,2'-bi(tetrahydro)pyrimidine (H(2)bip) complexes and between cobalt 2,2'-biimidazoline (H(2)bim) complexes. The (1)H NMR resonances of [Fe(II)(H(2)bip)(3)](2+) are broadened upon addition of [Fe(III)(H(2)bip)(3)](3+), indicating that electron self-exchange occurs with k(Fe,e)(-) = (1.1 +/- 0.2) x 10(5) M(-1) s(-1) at 298 K in CD(3)CN. Similar studies of [Fe(II)(H(2)bip)(3)](2+) plus [Fe(III)(Hbip)(H(2)bip)(2)](2+) indicate that hydrogen-atom self-exchange (proton-coupled electron transfer) occurs with k(Fe,H.) = (1.1 +/- 0.2) x 10(4) M(-1) s(-1) under the same conditions. Both self-exchange reactions are faster at lower temperatures, showing small negative enthalpies of activation: DeltaH++(e(-)) = -2.1 +/- 0.5 kcal mol(-1) (288-320 K) and DeltaH++(H.) = -1.5 +/- 0.5 kcal mol(-1) (260-300 K). This behavior is concluded to be due to the faster reaction of the low-spin states of the iron complexes, which are depopulated as the temperature is raised. Below about 290 K, rate constants for electron self-exchange show the more normal decrease with temperature. There is a modest kinetic isotope effect on H-atom self-exchange of 1.6 +/- 0.5 at 298 K that is close to that seen previously for the fully high-spin iron biimidazoline complexes.(12) The difference in the measured activation parameters, E(a)(D) - E(a)(H), is -1.2 +/- 0.8 kcal mol(-1), appears to be inconsistent with a semiclassical view of the isotope effect, and suggests extensive tunneling. Reactions of [Co(H(2)bim)(3)](2+)-d(24) with [Co(H(2)bim)(3)](3+) or [Co(Hbim)(H(2)bim)(2)](2+) occur with scrambling of ligands indicating inner-sphere processes. The self-exchange rate constant for outer-sphere electron transfer between [Co(H(2)bim)(3)](2+) and [Co(H(2)bim)(3)](3+) is estimated to be 10(-)(6) M(-1) s(-1) by application of the Marcus cross relation. Similar application of the cross relation to H-atom transfer reactions indicates that self-exchange between [Co(H(2)bim)(3)](2+) and [Co(Hbim)(H(2)bim)(2)](2+) is also slow, < or =10(-3) M(-1) s(-1). The slow self-exchange rates for the cobalt complexes are apparently due to their interconverting high-spin [Co(II)(H(2)bim)(3)](2+) with low-spin Co(III) derivatives.  相似文献   

10.
Nguyen N  Lough AJ  Fekl U 《Inorganic chemistry》2012,51(12):6446-6448
Triphenylphosphine (PPh(3)) rapidly and reversibly adds to the bdt ligand in the molybdenum tris(dithiolene) complex Mo(tfd)(2)(bdt) [tfd = S(2)C(2)(CF(3))(2); bdt = S(2)C(6)H(4)], turning chelating bdt into the monodentate zwitterionic ligand SC(6)H(4)SPPh(3). A second PPh(3) molecule fills the newly created open site in the crystallographically characterized product Mo(tfd)(2)(SC(6)H(4)SPPh(3))(PPh(3)), which is a structural model for dimethyl sulfoxide (DMSO) reductase. While the complex is only a precatalyst for reduction of DMSO by PPh(3) (the initially low catalytic rate increases with time), Mo(tfd)(2)(SMe(2))(2) was found to be catalytically active without an induction period.  相似文献   

11.
Polyoxometalate ions are used as ligands in water-oxidation processes related to solar energy production. An important step in these reactions is the association and dissociation of water from the catalytic sites, the rates of which are unknown. Here we report the exchange rates of water ligated to Co(II) atoms in two polyoxotungstate sandwich molecules using the (17)O-NMR-based Swift-Connick method. The compounds were the [Co(4)(H(2)O)(2)(B-α-PW(9)O(34))(2)](10-) and the larger αββα-[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-) ions, each with two water molecules bound trans to one another in a Co(II) sandwich between the tungstate ligands. The clusters, in both solid and solution state, were characterized by a range of methods, including NMR, EPR, FT-IR, UV-Vis, and EXAFS spectroscopy, ESI-MS, single-crystal X-ray crystallography, and potentiometry. For [Co(4)(H(2)O)(2)(B-α-PW(9)O(34))(2)](10-) at pH 5.4, we estimate: k(298)=1.5(5)±0.3×10(6) s(-1), ΔH(≠)=39.8±0.4 kJ mol(-1), ΔS(≠)=+7.1±1.2 J mol(-1) K(-1) and ΔV(≠)=5.6 ±1.6 cm(3) mol(-1). For the Wells-Dawson sandwich cluster (αββα-[Co(4)(H(2)O)(2)(P(2)W(15)O(56))(2)](16-)) at pH 5.54, we find: k(298)=1.6(2)±0.3×10(6) s(-1), ΔH(≠)=27.6±0.4 kJ mol(-1) ΔS(≠)=-33±1.3 J mol(-1) K(-1) and ΔV(≠)=2.2±1.4 cm(3) mol(-1) at pH 5.2. The molecules are clearly stable and monospecific in slightly acidic solutions, but dissociate in strongly acidic solutions. This dissociation is detectable by EPR spectroscopy as S=3/2 Co(II) species (such as the [Co(H(2)O)(6)](2+) monomer ion) and by the significant reduction of the Co-Co vector in the XAS spectra.  相似文献   

12.
The selective two-electron reduction of O(2) by one-electron reductants such as decamethylferrocene (Fc*) and octamethylferrocene (Me(8)Fc) is efficiently catalyzed by a binuclear Cu(II) complex [Cu(II)(2)(LO)(OH)](2+) (D1) {LO is a binucleating ligand with copper-bridging phenolate moiety} in the presence of trifluoroacetic acid (HOTF) in acetone. The protonation of the hydroxide group of [Cu(II)(2)(LO)(OH)](2+) with HOTF to produce [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF) makes it possible for this to be reduced by 2 equiv of Fc* via a two-step electron-transfer sequence. Reactions of the fully reduced complex [Cu(I)(2)(LO)](+) (D3) with O(2) in the presence of HOTF led to the low-temperature detection of the absorption spectra due to the peroxo complex [Cu(II)(2)(LO)(OO)] (D) and the protonated hydroperoxo complex [Cu(II)(2)(LO)(OOH)](2+) (D4). No further Fc* reduction of D4 occurs, and it is instead further protonated by HOTF to yield H(2)O(2) accompanied by regeneration of [Cu(II)(2)(LO)(OTF)](2+) (D1-OTF), thus completing the catalytic cycle for the two-electron reduction of O(2) by Fc*. Kinetic studies on the formation of Fc*(+) under catalytic conditions as well as for separate examination of the electron transfer from Fc* to D1-OTF reveal there are two important reaction pathways operating. One is a rate-determining second reduction of D1-OTF, thus electron transfer from Fc* to a mixed-valent intermediate [Cu(II)Cu(I)(LO)](2+) (D2), which leads to [Cu(I)(2)(LO)](+) that is coupled with O(2) binding to produce [Cu(II)(2)(LO)(OO)](+) (D). The other involves direct reaction of O(2) with the mixed-valent compound D2 followed by rapid Fc* reduction of a putative superoxo-dicopper(II) species thus formed, producing D.  相似文献   

13.
The hydrothermal chemistry of a variety of M(II)SO(4) salts with the tetrazole (Ht) ligands 5,5'-(1,4-phenylene)bis(1H-tetrazole) (H(2)bdt), 5',5'-(1,1'-biphenyl)4,4'-diylbis(1H-tetrazole) (H(2)dbdt) and 5,5',5'-(1,3,5-phenylene)tris(1H-tetrazole) (H(3)btt) was investigated. In the case of Co(II), three phases were isolated, two of which incorporated sulfate: [Co(5)F(2)(dbdt)(4)(H(2)O)(6)]·2H(2)O (1·2H(2)O), [Co(4)(OH)(2)(SO(4))(bdt)(2)(H(2)O)(4)] (2) and [Co(3)(OH)(SO(4))(btt)(H(2)O)(4)]·3H(2)O (3·3H(2)O). The structures are three-dimensional and consist of cluster-based secondary building units: the pentanuclear {Co(5)F(2)(tetrazolate)(8)(H(2)O)(6)}, the tetranuclear {Co(4)(OH)(2)(SO(4))(2)(tetrazolate)(6)}(4-), and the trinuclear {Co(3)(μ(3)-OH)(SO(4))(2) (tetrazolate)(3)}(2-) for 1, 2, and 3, respectively. The Ni(II) analogue [Ni(2)(H(0.67)bdt)(3)]·10.5H(2)O (4·10.5H(2)O) is isomorphous with a fourth cobalt phase, the previously reported [Co(2)(H(0.67)bat)(3)]·20H(2)O and exhibits a {M(tetrazolate)(3/2)}(∞) chain as the fundamental building block. The dense three-dimensional structure of [Zn(bdt)] (5) consists of {ZnN(4)}tetrahedra linked through bdt ligands bonding through N1,N3 donors at either tetrazolate terminus. In contrast to the hydrothermal synthesis of 1-5, the Cd(II) material (Me(2)NH(2))(3)[Cd(12)Cl(3)(btt)(8)(DMF)(12)]·xDMF·yMeOH (DMF = dimethylformamide; x = ca. 12, y = ca. 5) was prepared in DMF/methanol. The structure is constructed from the linking of {Cd(4)Cl(tetrazolate)(8)(DMF)(4)}(1-) secondary building units to produce an open-framework material exhibiting 66.5% void volume. The magnetic properties of the Co(II) series are reflective of the structural building units.  相似文献   

14.
The Mo(3)SnS(4)(6+) single cube is obtained by direct addition of Sn(2+) to [Mo(3)S(4)(H(2)O)(9)](4+). UV-vis spectra of the product (0.13 mM) in 2.00 M HClO(4), Hpts, and HCl indicate a marked affinity of the Sn for Cl(-), with formation of the more strongly yellow [Mo(3)(SnCl(3))S(4)(H(2)O)(9)](3+) complex complete in as little as 0.050 M Cl(-). The X-ray crystal structure of (Me(2)NH(2))(6)[Mo(3)(SnCl(3))S(4)(NCS)(9)].0.5H(2)O has been determined and gives Mo-Mo (mean 2.730 ?) and Mo-Sn (mean 3.732 ?) distances, with a difference close to 1 ?. The red-purple double cube cation [Mo(6)SnS(8)(H(2)O)(18)](8+) is obtained by reacting Sn metal with [Mo(3)S(4)(H(2)O)(9)](4+). The double cube is also obtained in approximately 50% yield by BH(4)(-) reduction of a 1:1 mixture of [Mo(3)SnS(4)(H(2)O)(10)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+). Conversely two-electron oxidation of [Mo(6)SnS(8)(H(2)O)(18)](8+) with [Co(dipic)(2)](-) or [Fe(H(2)O(6)](3+) gives the single cube [Mo(3)SnS(4)(H(2)O)(12)](6+) and [Mo(3)S(4)(H(2)O)(9)](4+) (up to 70% yield), followed by further two-electron oxidation to [Mo(3)S(4)(H(2)O)(9)](4+) and Sn(IV). The kinetics of the first stages have been studied using the stopped-flow method and give rate laws first order in [Mo(6)SnS(8)(H(2)O)(18)](8+) and the Co(III) or Fe(III) oxidant. The oxidation with [Co(dipic)(2)](-) has no [H(+)] dependence, [H(+)] = 0.50-2.00 M. With Fe(III) as oxidant, reaction steps involving [Fe(H(2)O)(6)](3+) and [Fe(H(2)O)(5)OH](2+) are implicated. At 25 degrees C and I = 2.00 M (Li(pts)) k(Co) is 14.9 M(-)(1) s(-)(1) and k(a) for the reaction of [Fe(H(2)O)(6)](3+) is 0.68 M(-)(1) s(-)(1) (both outer-sphere reactions). Reaction of Cu(2+) with the double but not the single cube is observed, yielding [Mo(3)CuS(4)(H(2)O)(10)](5+). A redox-controlled mechanism involving intermediate formation of Cu(+) and [Mo(3)S(4)(H(2)O)(9)](4+) accounts for the changes observed.  相似文献   

15.
Described are new derivatives of the type [HNiFe(SR)(2)(diphosphine)(CO)(3)](+), which feature a Ni(diphosphine) group linked to a Fe(CO)(3) group by two bridging thiolate ligands. Previous work had described [HNiFe(pdt)(dppe)(CO)(3)](+) ([1H](+)) and its activity as a catalyst for the reduction of protons (J. Am. Chem. Soc. 2010, 132, 14877). Work described in this paper focuses on the effects on properties of NiFe model complexes of the diphosphine attached to nickel as well as the dithiolate bridge, 1,3-propanedithiolate (pdt) vs 1,2-ethanedithiolate (edt). A new synthetic route to these Ni-Fe dithiolates is described, involving reaction of Ni(SR)(2)(diphosphine) with FeI(2)(CO)(4) followed by in situ reduction with cobaltocene. Evidence is presented that this route proceeds via a metastable μ-iodo derivative. Attempted isolation of such species led to the crystallization of NiFe(Me(2)pdt)(dppe)I(2), which features tetrahedral Fe(II) and square planar Ni(II) centers (H(2)Me(2)pdt = 2,2-dimethylpropanedithiol). The new tricarbonyls prepared in this work are NiFe(pdt)(dcpe)(CO)(3) (2, dcpe = 1,2-bis(dicyclohexylphosphino)ethane), NiFe(edt)(dppe)(CO)(3) (3), and NiFe(edt)(dcpe)(CO)(3) (4). Attempted preparation of a phenylthiolate-bridged complex via the FeI(2)(CO)(4) + Ni(SPh)(2)(dppe) route gave the tetrametallic species [(CO)(2)Fe(SPh)(2)Ni(CO)](2)(μ-dppe)(2). Crystallographic analysis of the edt-dcpe compund [2H]BF(4) and the edt-dppe compound [3H]BF(4) verified their close resemblance. Each features pseudo-octahedral Fe and square pyramidal Ni centers. Starting from [3H]BF(4) we prepared the PPh(3) derivative [HNiFe(edt)(dppe)(PPh(3))(CO)(2)]BF(4) ([5H]BF(4)), which was obtained as a ~2:1 mixture of unsymmetrical and symmetrical isomers. Acid-base measurements indicate that changing from Ni(dppe) (dppe = Ph(2)PCH(2)CH(2)PPh(2)) to Ni(dcpe) decreases the acidity of the cationic hydride complexes by 2.5 pK(a)(PhCN) units, from ~11 to ~13.5 (previous work showed that substitution at Fe leads to more dramatic effects). The redox potentials are more strongly affected by the change from dppe to dcpe, for example the [2](0/+) couple occurs at E(1/2) = -820 for [2](0/+) vs -574 mV (vs Fc(+/0)) for [1](0/+). Changes in the dithiolate do not affect the acidity or the reduction potentials of the hydrides. The acid-independent rate of reduction of CH(2)ClCO(2)H by [2H](+) is about 50 s(-1) (25 °C), twice that of [1H](+). The edt-dppe complex [2H](+) proved to be the most active catalyst, with an acid-independent rate of 300 s(-1).  相似文献   

16.
The Mo-based polyoxometalates containing mono- and dicobalt(III) catalyst cores, [CoMo(6)O(24)H(6)](3-) and [Co(2)Mo(10)O(38)H(4)](6-), were found to serve as O(2)-evolving catalysts in a system consisting of tris(2,2'-bipyridine)ruthenium(II) (Ru(bpy)(3)(2+)) and sodium persulfate (S(2)O) in an aqueous borate buffer solution at pH 8.0. Kinetics of O(2) evolution reveals that the higher cobalt nuclearity is not necessary to attain the highly active nature of the catalyst.  相似文献   

17.
Reaction of CoCl(2).4H(2)O with Ag(3)[Cr(ox)(3)] (3 : 2 mol/mol) in methanol gives rise to an oxalate-bridged complex [Co(MeOH)(2)](3)[Cr(ox)(3)](2).6MeOH that consists of a rare cloverleaf-like layered structure (12,3-net). Ferromagnetic coupling is operative between the adjacent metal ions through the oxalate bridges.  相似文献   

18.
The reaction of [Ni[Co(aet)(2)(pyt)](2)](2+) (aet = 2-aminoethanethiolate, pyt = 2-pyridinethiolate) with [PtCl(4)](2)(-) gave an S-bridged Co(III)Pt(II)Co(III) trinuclear complex composed of two [Co(aet)(2)(pyt)] units, [Pt[Co(aet)(2)(pyt)](2)](2+) ([1](2+)). When a 1:1 mixture of [Ni[Co(aet)(2)(pyt)](2)](2+) and [Ni[Co(aet)(2)(en)](2)](4+) was reacted with [PtCl(4)](2)(-), a mixed-type S-bridged Co(III)Pt(II)Co(III) complex composed of one [Co(aet)(2)(pyt)] and one [Co(aet)(2)(en)](+) units, [Pt[Co(aet)(2)(en)][Co(aet)(2)(pyt)]](3+) ([2](3+)), was produced, together with [1](2+) and [Pt[Co(aet)(2)(en)](2)](4+). The corresponding Co(III)Pt(II)Co(III) trinuclear complexes containing pymt (2-pyrimidinethiolate), [Pt[Co(aet)(2)(pymt)](2)](2+) ([3](2+)) and [Pt[Co(aet)(2)(en)][Co(aet)(2)(pymt)]](3+) ([4](3+)), were also obtained by similar reactions, using [Ni[Co(aet)(2)(pymt)](2)](2+) instead of [Ni[Co(aet)(2)(pyt)](2)](2+). While [Pt[Co(aet)(2)(en)](2)](4+) formed both the deltalambda (meso) and deltadelta/lambdalambda (racemic) forms in a ratio of ca. 1:1, the preferential formation of the deltadelta/lambdalambda form was observed for [1](2+) (ca. deltalambda:deltadelta/lambdalambda = 1:3) and [2](3+) (ca. delta(en)lambda(pyt)/lambda(en)delta(pyt):deltadelta/lambdalambda = 1:2). Furthermore, [3](2+) and [4](3+) predominantly formed the deltadelta/lambdalambda form. These results indicate that the homochiral selectivity for the S-bridged Co(III)Pt(II)Co(III) trinuclear complexes composed of two octahedral [Co(aet)(2)(L)](0 or +) units is enhanced in the order L = en < pyt < pymt. The isomers produced were separated and optically resolved, and the crystal structures of the meso-type deltalambda-[1]Cl(2).4H(2)O and the spontaneously resolved deltadelta-[4](ClO(4))(3).H(2)O were determined by X-ray analyses. In deltalambda-[1](2+), the delta and Lambda configurational mer(S).trans(N(aet))-[Co(aet)(2)(pyt)] units are linked by a square-planar Pt(II) ion through four aet S atoms to form a linear-type S-bridged trinuclear structure. In deltadelta-[4](3+), a similar linear-type trinuclear structure is constructed from the delta-mer(S).trans(N(aet))-[Co(aet)(2)(pymt)] and delta-C(2)-cis(S)-[Co(aet)(2)(en)](+) units that are bound by a Pt(II) ion with a slightly distorted square-planar geometry through four aet S atoms.  相似文献   

19.
Mallon CT  Forster RJ  Keyes TE 《The Analyst》2011,136(23):5051-5057
The dissociation of a cobalt bisdiphenylterpyridine, [Co(biptpy)(2)](2+), guest at mixed (γ-CD-(py)(2))-alkanethiol layers (where γ-CD-(py)(2) is di-6(A), 6(B)- deoxy-6-(4-pyridylmethyl)amino- γ-cyclodextrin) formed on platinum electrodes is reported. Cyclic voltammetry (CV) shows reversible one-electron surface confined waves consistent with the Co(2/3+) couple bound at the interface. The quantity of [Co(biptpy)(2)](3+) reduced is found to be dependent on the scan rate employed, with greater amounts at higher scan rates. This behavior is in contrast to the CD guest ferrocene, which upon oxidation to the ferrocenium ion shows little charge associated with reduction even at elevated scan rates. Chronocoulometry was conducted to systematically vary the time spent oxidizing [Co(biptpy)(2)](2+) and to measure the resulting charge associated with the reduction of [Co(biptpy)(2)](3+). It is determined experimentally that as the pulse width increases, i.e. greater time spent in the oxidizing region, the amount of charge needed to reduce [Co(biptpy)(2)](3+) decreases dramatically. This decrease, along with the CV data, suggests strongly that the [Co(biptpy)(2)](3+) dissociates from the cavity. Significantly, this dissociation of the interfacial host-guest complex occurs on a much longer timescale (the order of seconds) compared to the oxidation of [Co(biptpy)(2)](2+) to [Co(biptpy)(2)](3+), which has been measured using high speed chronoamperometry to occur with a rate contant, k(0), of approximately 10(3) s(-1). The comparison of the timescale for dissociation of the interfacial complex and for electron transfer signifies that the electron transfer step occurs before dissociation, i.e. dissociation via an EC mechanism. The dissociation mechanism of [Co(biptpy)(2)](3+) is contrasted with that of the ferrocene/ferrocenium couple.  相似文献   

20.
In methanol or chloroform/methanol solutions, reactions of Cltpy or MeOtpy (Rtpy = 4'-R-2,2':6',2'-terpyridine) with CoX(2)·xH(2)O (X(-) = Cl(-), [OAc](-), [NO(3)](-) or [BF(4)](-)) result in the formation of equilibrium mixtures of [Co(Rtpy)(2)](2+) and [Co(Rtpy)X(2)]. A study of the solution speciation has been carried out using (1)H NMR spectroscopy, aided by the dispersion of signals in the paramagnetically shifted spectra; on going from a low- to high-spin cobalt(II) complex, proton H(6) of the tpy ligand undergoes a significant shift to higher frequency. For R = Cl and X(-) = [OAc](-), increasing the amount of CD(3)OD in the CD(3)OD/CDCl(3) solvent mixture affects both the relative proportions of [Co(Cltpy)(2)](2+) and [Co(Cltpy)(OAc)(2)] and the chemical shifts of the (1)H NMR resonances arising from [Co(Cltpy)(OAc)(2)]. When the solvent is essentially CDCl(3), the favoured species is [Co(Cltpy)(OAc)(2)]. For the 4'-methoxy-2,2':6',2'-terpyridine, the speciation of mono- and bis(terpyridine)cobalt(II) complexes depends upon the anion, solvent and ligand:Co(2+) ion ratio. The (1)H NMR spectrum of [Co(MeOtpy)(2)](2+) is virtually independent of anion and solvent. In contrast, the signals arising from [Co(MeOtpy)X(2)] depend on the anion and solvent. In the case of X(-) = [BF(4)](-), we propose that the mono(tpy) complex formed in solution is [Co(MeOtpy)L(n)](2+) (L = H(2)O or solvent, n = 1-3). The formation of mono(tpy) species has been confirmed by the solid state structures of [Co(Cltpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(OAc-O)(OAc-O,O')], [Co(MeOtpy)(NO(3)-O)(2)(OH(2))] and [Co(MeOtpy)Cl(2)]. The single crystal structure of the cobalt(III) complex [Co(Cltpy)Cl(3)]·CHCl(3) is also reported.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号