首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adsorbed layers of "comb-type" copolymers consisting of PEG chains grafted onto a poly(l-lysine) (PLL) backbone on niobium oxide substrates were studied by colloid-probe AFM in order to characterize the interfacial forces associated with coatings of varying architectures (PEG/PLL ratios and PEG chain lengths) and their relevance to protein resistance. The steric and electrostatic forces measured varied substantially with the architecture of the PLL-g-PEG copolymers. Varying the ionic strength of the buffer solutions enabled discrimination between electrostatic and steric-entropic contributions to the net interfacial force. For high PEG grafting densities the steric component was most prominent, but at low ionic strengths and high grafting densities, a repulsive electrostatic surface force was also observed; its origin was assigned to the niobia charges beneath the copolymer, as insufficient protonated amine groups in the PLL backbone were available for compensation of the oxide surface charges. For lower grafting densities and lower ionic strengths there was a substantial attractive electrostatic contribution arising from interaction of the electrical double layer arising from the protonated amine groups, with that of the silica probe surface (as under low ionic strength conditions, the electrical double layer was thicker than the PEG layer). For these PLL-g-PEG coatings the net interfacial force can thus be a markedly varying superposition of electrostatic and steric-entropic contributions, depending on various factors. The force curves correlate with protein adsorption data, demonstrating the utility of AFM colloid-probe force measurements for quantitative analysis of surface forces and how they determine interfacial interactions with proteins. Such characterization of the net interfacial forces is essential to elucidate the multiple types of interfacial forces relevant to the interactions between PLL-g-PEG coatings and proteins and to advance interpretation of protein adsorption or repellence beyond the oversimplified steric barrier model; in particular, our data demonstrate the importance of an ionic-strength-dependent minimum PEG layer thickness to screen the electrostatic interactions of charged interfaces.  相似文献   

2.
The effects of supporting electrolyte on the kinetics of the elementary step of electron transfer are considered as unavoidable interplay of interfacial phenomena and ionic equilibria in solution. For the former, the problems to separate contributions of electrostatic electrode-reactant interactions and specific adsorption are addressed, and various aspects of the traditional Frumkin correction (“psi-prime effect”) are discussed. The construction of corrected Tafel plots is shown to be a procedure containing the internal contradiction resulting in an uncertainty. This uncertainty can be eliminated by combining the principles of traditional analysis of the “double layer” effects with physical theory instead of phenomenological approaches. Specific manifestations of parallel electron transfer to an ensemble of reacting species are presented in the context of “mean reactant charge in solution bulk.” The approach to account for non-spherical shape and inhomogeneous charge distribution in reacting species is considered in terms of “molecular psi-prime effect.” Finally, some comments are given on analogy of “double layer” effects at metal/solution interface and interfacial phenomena specific for more complex and highly relevant electrochemical systems.  相似文献   

3.
More often than not, the measurement of interfacial potentials by means of electrokinetic techniques is affected by interfering processes that may relax or even annihilate their primary response function. Among these processes are faradaic ones, provided that the substrate is sufficiently conducting and a redox function is available, and non-faradaic ones, if geometrical constraints are in effect. Ample experimental evidence is available, e.g., in the collapse of streaming potentials generated by metal/electrolyte solution interfaces, the bipolar microelectrodic redox processes in fluidized beds of metallic particles, and the "superfast" electrophoresis of dispersed ion exchanger particles and electron-conducting particles. Common feature of these apparently disparate phenomena is that the lateral electric field is affected by coupling with transversal depolarization fields, or by conductance gradients due to Donnan effects. Recent work has rigorously analyzed the deformation of the lateral electric field in a (streaming potential) slit cell by electron transfer reactions at the interface, taking into account both convective diffusion of the electroactive species and kinetics of the interfacial electron transfer reaction. Here a common, generic basis for faradaic and non-faradaic double layer depolarization is formulated along the lines set by Onsager, and methodologies for retrieving the underlying electrokinetic parameters from experimental data are evaluated. Particular attention is paid to the limitations of double layer polarization, as posed by the substrate.  相似文献   

4.
A study of single proteins, β-lactoglobulin and lysozyme of different sizes and electrical characteristic as a function of pH, ionic strength and nature of salt (NaCl or CaCl2) allows to evaluate the filtration performances. Streaming potential measurements confirm that proteins contribute to the net charge of the system and that the protein tranfer through mineral membranes is governed by ionic and steric exclusion phenomena.This work shows the correlation between protein transmission and streaming potential values which takes into account steric and ionic exclusion. The ionic repulsion decreases the transmission. This one depends on membrane net charge characterised by streaming potential, which depends on the solution composition. This model, which does not take into account interactions between protein and membrane fouling leads to an overestimation of calculated transmission values when proteins are in a mixture. However, it allows a correct estimation of transmission variations versus the studied variables: pH and ionic strength.  相似文献   

5.
PEGylated Nb2O5 surfaces were obtained by the adsorption of poly(L-lysine)-g-poly(ethylene glycol) (PLL-g-PEG) copolymers, allowing control of the PEG surface density, as well as the surface charge. PEG (MW 2 kDa) surface densities between 0 and 0.5 nm(-2) were obtained by changing the PEG to lysine-mer ratio in the PLL-g-PEG polymer, resulting in net positive, negative and neutral surfaces. Colloid probe atomic force microscopy (AFM) was used to characterize the interfacial forces associated with the different surfaces. The AFM force analysis revealed interplay between electrical double layer and steric interactions, thus providing information on the surface charge and on the PEG layer thickness as a function of copolymer architecture. Adsorption of the model proteins lysozyme, alpha-lactalbumin, and myoglobin onto the various PEGylated surfaces was performed to investigate the effect of protein charge. In addition, adsorption experiments were performed over a range of ionic strengths, to study the role of electrostatic forces between surface charges and proteins acting through the PEG layer. The adsorbed mass of protein, measured by optical waveguide lightmode spectroscopy (OWLS), was shown to depend on a combination of surface charge, protein charge, PEG thickness, and grafting density. At high grafting density and high ionic strength, the steric barrier properties of PEG determine the net interfacial force. At low ionic strength, however, the electrical double layer thickness exceeds the thickness of the PEG layer, and surface charges "shining through" the PEG layer contribute to protein interactions with PLL-g-PEG coated surfaces. The combination of AFM surface force measurements and protein adsorption experiments provides insights into the interfacial forces associated with various PEGylated surfaces and the mechanisms of protein resistance.  相似文献   

6.
Hemodialysis membranes were characterized by means of streaming potential measurements. By variation of the concentrations of different ionic species in the measuring solutions surface potential determining processes can be distinguished: The investigated materials (cellulose derivates) yield surface charges mainly from preferred adsorption of ions. A thermodynamic model of the electrochemical double layer according to STERN (1) was applied to quantify that processes; the resulting set of parameters provide a conjunction between chemical surface properties and the observed interfacial charging processes. Streaming potential measurements can be used for the in situ characterization of the adsorption of biologically relevant molecules like proteins and polysaccharides onto membrane materials. The results given here show the alteration of interfacial properties of different cellulosic membranes through adsorption of human serum albumin and fibrinogen in single, sequential and competitive adsorption.  相似文献   

7.
Thermophoresis of colloidal particles in aqueous media is more frequently applied in biomedical analysis with processed fluids as biofluids. In this work, a numerical analysis of the thermophoresis of charged colloidal particles in non-Newtonian concentrated electrolyte solutions is presented. In a particle-fixed reference frame, the flow field of non-Newtonian fluids has been governed by the Cauchy momentum equation and the continuity equation, with the dynamic viscosity following the power-law fluid model. The numerical simulations reveal that the shear-thinning effect of pseudoplastic fluids is advantageous to the thermophoresis, and the shear-thickening effect of dilatant fluids slows down the thermophoresis. Both the shear-thinning and shear-thickening effects of non-Newtonian fluids on a thermodiffusion coefficient are pronounced for the case when the thickness of electric double layer (EDL) surrounding a particle is moderate or thin. Finally, the reciprocal of the dynamic velocity at the particle surface is calculated to approximately estimate the thermophoretic behavior of a charged particle with moderate or thin EDL thickness.  相似文献   

8.
9.
The role for many-body dipolar (dispersion) potentials in ion-solvent and ion-solvent-interface interactions is explored. Such many-body potentials, accessible in principle from measured dielectric data, are necessary in accounting for Hofmeister specific ion effects. Dispersion self-energy is the quantum electrodynamic analogue of the Born electrostatic self-energy of an ion. We here describe calculations of dispersion self-free energies of four different anions (OH-, Cl-, Br-, and I-) that take finite ion size into account. Three different examples of self-free energy calculations are presented. These are the self-free energy of transfer of an ion to bulk solution, which influences solubility; the dispersion potential acting between one ion and an air-water interface (important for surface tension calculations); and the dispersion potential acting between two ions (relevant to activity coefficient calculations). To illustrate the importance of dispersion self-free energies, we compare the Born and dispersion contributions to the free energy of ion transfer from water to air (oil). We have also calculated the change in interfacial tension with added salt for air (oil)-water interfaces. A new model is used that includes dispersion potentials acting on the ions near the interface, image potentials, and ions of finite size that are allowed to spill over the solution-air interface. It is shown that interfacial free energies require a knowledge of solvent profiles at the interface.  相似文献   

10.
Accurate and rapid estimation of the streaming current in nanochannels is crucial for the development of the nanofluidics based power generation apparatus. In this study, an analytical model is developed for the first time to examine the electroviscous effect on the streaming current/conductance in a pH-regulated nanochannel by considering practical effects of multiple ionic species, surface chemistry reactions, and the Stern layer. Predictions from the model are in good agreement with the experimental results of the streaming conductance in silica nanochannels available in the literature. The electroviscous effect could have a significant reduction of ca. 30% in the streaming conductance at medium pH and low salt concentration.  相似文献   

11.
A growing number of publications in the last two decades have suggested that the structure and other properties of the interfacial water layer can significantly affect the double layer (DL) because of changes in ion solvatation energy. Most interesting is the possibility that a double layer might in fact exist, even when there is no electric surface charge at all, solely because of the difference in cation and anion concentrations within this interfacial water layer. Dukhin, Derjaguin, and Yaroschuk suggested this possibility 20 years ago and developed a phenomenological theory. Recently, Mancui and Ruckenstein created more sophisticated microscopic model. In this article, we present our first experimental result regarding the verification of this "zero surface charge" DL model. The electroacoustic technique allows testing at high ionic strength (up to 2 M). As a first step, we confirm the surprising result of Johnson, Scales, and Healy regarding large zeta potential of alumina (8 +/- 1 mV) in 1 M KCl. As a second step, we suggest using nonionic surfactant Tween 80 for probing and modifying the structure of the interfacial layer at high ionic strength. The application of surfactant at moderate ionic strength (i.e., <0.1 mol/dm3), as might be expected, reduces the zeta potential simply by shifting the slipping plane. However, there is no influence of surfactant on the zeta potential observed at high ionic strength. It turns out that a high concentration of KCl simply eliminates surfactant adsorption. We develop a new technique for characterizing the adsorption of nonionic surfactant using an acoustic attenuation measurement. We hope that these methods in combination with a proper surfactant and electrolyte selection would allow us to gain more detailed information on the interface structure at high ionic strength.  相似文献   

12.
A dynamic mass transfer equation for describing magnetophoresis, sedimentation, and gradient diffusion of colloidal particles in concentrated magnetic fluids has been derived. This equation takes into account steric, magnetodipole, and hydrodynamic interparticle interactions. Steric interactions have been investigated using the Carnahan-Starling approximation for a hard-sphere system. In order to study the effective interparticle attraction, the free energy of the dipolar hard-sphere system is represented as a virial expansion with accuracy to the terms quadratic in particle concentration. The virial expansion gives an interpolation formula that fits well the results of computer simulation in a wide range of particle concentrations and interparticle interaction energies. The diffusion coefficient of colloidal particles is written with regard to steric, magnetodipole and hydrodynamic interactions. We thereby laid the foundation for the formulation of boundary-value problems and for calculation of concentration and magnetic fields in the devices (for example, magnetic fluid seals and acceleration sensors), which use a concentrated magnetic fluid as a working fluid. The Monte-Carlo methods and the analytical approach are employed to study the magnetic fluid stratification generated by the gravitational field in a cylinder of finite height. The coefficient of concentration stratification of the magnetic fluid is calculated in relation to the average concentration of particles and the dipolar coupling constant. It is shown that the effective particle attraction causes a many-fold increase in the concentration inhomogeneity of the fluid if the average volume fraction of particles does not exceed 30%. At high volume concentrations steric interactions play a crucial role.  相似文献   

13.
We consider a modified electrokinetic model to study the electrophoresis of a hydrophobic particle by considering the finite sized ions. The mathematical model adopted in this study incorporates the ion steric repulsion, ion-solvent interactions as well as Maxwell stress on the electrolyte. The dielectric permittivity and viscosity of the electrolyte is considered to vary with the local ionic volume fraction. Based on this modified model for the electrokinetics we have analyzed the electrophoresis in a single as well as mixture of electrolytes of monovalent and non- z : z $z:z$ electrolytes. The dependence of viscosity on local ionic volume fraction modifies the hydrodynamic drag as well as diffusivity of ions, which are ignored in existing studies on electrophoresis. A simplified model for electrophoresis of a hydrophobic particle incorporating the ion steric repulsion and ion-solvent interactions is developed based on the first-order perturbation on applied electric field. This simplified model is established to be efficient for a Debye layer thinner than the particle size and a smaller range of slip length. This model can be implemented for any number of ionic species as well as non- z : z $z:z$ electrolytes. It is established that the ion steric interactions and dielectric decrement creates a counterion saturation in the Debye layer leading to an enhanced mobility compared to the standard model. However, experimental data for non-dilute cases often under predicts the theoretically determined mobility. The present modified model fills this lacuna and demonstrate that the consideration of finite ion size modifies the medium viscosity and hence, ionic mobility, which in combination lowers the mobility value.  相似文献   

14.
The effects of introducing ionic functionalities in phosphine ligands on the coordination chemistry of these ligands and the catalytic behavior of the corresponding metal complexes are reviewed. The steric and electronic consequences of such functionalizations are discussed. Apart from these steric and electronic effects, the presence of charged groups often leads to additional, supramolecular interactions that occur in the second coordination sphere of the metal complex, such as intramolecular, interligand hydrogen bonding and Coulombic repulsion. These interactions can significantly alter the behavior of the phosphine ligand in question. Such effects have been observed in phosphine-metal association/dissociation equilibria, ligand substitution reactions, and stereoisomerism in phosphine-metal complexes. By drawing general conclusions, this review offers an insight into the coordination and catalytic behavior of phosphine ligands containing ionic functionalities and their corresponding metal complexes.  相似文献   

15.
One of the main assumptions of the classical theory most widely used to characterize electrokinetic phenomena is that ions behave as point-like entities. While the realization of the importance of the finite ion size goes back to Stern, 1924, it was Bikerman who presented in 1942 the first expression for the steric interactions among ions. Even now, this is the most often used expression, mainly due to its analytic simplicity. However, once ions are considered to have a finite size, other consequences besides the steric interactions have to be considered. For example, the finite closest approach distance of ions to the interface, the dielectrophoretic force acting on ions in a non-uniform electric field, the variation of the electrolyte solution permittivity with the local ion concentration, and the corresponding Born force acting on the ions, have to be taken into account. In this work, we examine these items in detail and discuss the main contributions made in this field. They show that even for the relatively low surface charge and electrolyte concentration values encountered in colloidal suspension studies, corrections to the classical theory due to ion size effects are far from negligible.  相似文献   

16.
All-solid-state battery has attracted significant attention as a promising next-generation energy storage. However, interfacial resistance of ion transport between the positive electrode and solid electrolyte is still a crucial issue for the all-solid-state battery commercialization. Although some mechanisms such as space charge layer and reaction layer effects have been suggested, the ionic and electronic behaviors at the solid–solid interfaces have not yet been fully elucidated. Here, we address theoretical microscopic understanding of the interfacial ionics and electronics from the viewpoints of electrochemistry and semiconductor physics, in conjunction with the results of recent density functional theory calculations.  相似文献   

17.
The "soft" (i.e., noncovalent) interactions between molecules and surfaces are complex and highly varied (e.g., hydrophobic, hydrogen bonding, and ionic), often leading to heterogeneous interfacial behavior. Heterogeneity can arise either from the spatial variation of the surface/interface itself or from molecular configurations (i.e., conformation, orientation, aggregation state, etc.). By observing the adsorption, diffusion, and desorption of individual fluorescent molecules, single-molecule tracking can characterize these types of heterogeneous interfacial behavior in ways that are inaccessible to traditional ensemble-averaged methods. Moreover, the fluorescence intensity or emission wavelength (in resonance energy transfer experiments) can be used to track the molecular configuration and simultaneously directly relate this to the resulting interfacial mobility or affinity. In this feature article, we review recent advances involving the use of single-molecule tracking to characterize heterogeneous molecule-surface interactions including multiple modes of diffusion and desorption associated with both internal and external molecular configuration, Arrhenius-activated interfacial transport, spatially dependent interactions, and many more.  相似文献   

18.
Transient streaming potential in a finite length microchannel   总被引:4,自引:0,他引:4  
Pressure-driven flow of an electrolyte solution in a microchannel with charged solid surfaces induces a streaming potential across the microchannel. Such a flow also causes rejection of ions by the microchannel, leading to different concentrations in the feed and permeate reservoirs connecting the capillary, which forms the basis of membrane based separation of electrolytes. Modeling approaches traditionally employed to assess the streaming potential development and ion rejection by capillaries often present a confusing picture of the governing electrochemical transport processes. In this paper, a transient numerical simulation of electrochemical transport process leading to the development of a streaming potential across a finite length circular cylindrical microchannel connecting two infinite reservoirs is presented. The solution based on finite element analysis shows the transient development of ionic concentrations, electric fields, and the streaming potential over the length of the microchannel. The transient analysis presented here resolves several contradictions between the two types of modeling approaches employed in assessing streaming potential development and ion rejection. The simulation results show that the streaming potential across the channel is predominantly set up at the timescale of the developing convective transport, while the equilibrium ion concentrations are developed over a considerably longer duration.  相似文献   

19.
Gold surfaces, obtained by vacuum deposition of 15-nm gold films on glass and silica wafers, were studied in aqueous solutions by streaming potential measurements and colloidal-probe AFM force measurements. In the force measurements both a bare and a gold-coated silica particle (6 microm in diameter) have been used as colloidal probes. From the streaming potential measurements we determined the zeta-potential of the gold surface, while from the force measurements the diffuse double-layer potential psi(d) was obtained by fitting the data to the DLVO theory or to the nonlinear Poisson-Boltzmann equation. Measured interactions were found to be entirely due to overlap of electric double layers with no indication of attractive Van der Waals forces. Results of both types of measurements are in good agreement. The double layer potential strongly depends on the pH, probably as a result of the presence of oxide species on the gold surface. Insight in the double layer potential of polarizable interfaces such as the gold/electrolyte solution interface is the first step for understanding the effect of externally applied potentials on the adsorption behavior of charged species.  相似文献   

20.
Plugs consisting of polystyrene particles with sulphonate surface groups have been investigated in the presence of mono-, di- and trivalent counterions. The streaming potentials and conductivities of the plug and bulk solution have been measured. From the latter, the overall surface conductivity has been estimated. It is shown that for this system, accounting for the surface conductivity in the hydrodynamically stagnant layer is crucial to convert the streaming potentials into zeta potentials. The overall surface conductivity clearly depends on the charge of the counterion, and so do the ionic mobilities in the stagnant layer. The higher the valency of the counterion, the lower is the ionic mobility in the stagnant layer, but for all counterions, the ionic mobility in the stagnant layer is of the same order of magnitude as in the bulk. For the divalent counterions, no indications of specific interactions with the surface groups have been found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号