首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We report the fabrication and characterization of new self-assembled monolayers (SAMs) formed from dihexadecyldithiophosphinic acid [(C(16))(2)DTPA] molecules on gold substrates. In these SAMs, the ability of the (C(16))(2)DTPA headgroup to chelate to the gold surface depends on the morphology of the gold substrate. Gold substrates fabricated by electron-beam evaporation (As-Dep gold) consist of ~50-nm grains separated by deep grain boundaries (~10 nm). These grain boundaries inhibit the chelation of (C(16))(2)DTPA adsorbates to the surface, producing SAMs in which there is a mixture of monodentate and bidentate adsorbates. In contrast, gold substrates produced by template stripping (TS gold) consist of larger grains (~200-500 nm) with shallower grain boundaries (<2 nm). On these substrates, the low density of shallow grain boundaries allows (C(16))(2)DTPA molecules to chelate to the surface, producing SAMs in which all molecules are bidentate. The content of bidentate adsorbates in (C(16))(2)DTPA SAMs formed on As-Dep and TS gold substrates strongly affects the SAM properties: Alkyl chain organization, wettability, frictional response, barrier properties, thickness, and thermal stability all depend on whether a SAM has been formed on As-Dep or TS gold. This study demonstrates that substrate morphology has an important influence on the structure of SAMs formed from these chelating adsorbates.  相似文献   

2.
Indium tin oxide (ITO) substrates have been modified by alkanethiol and fatty acid self-assembled monolayers (SAMs). The SAMs were grown by dipping the cleaned surface into either a pure alkanethiol or a fatty acid dissolved in various solvents. They were characterized through contact angle, X-ray photoelectron (XPS) and infrared absorption-reflection spectroscopy (IRRAS). Their density and structural organization was found to greatly depend on the cleaning treatment of the ITO surface, the length of the alkyl chain, and, in the case of fatty acids, the concentration of the solution. XPS measurements brought evidence for the fact that, in the case of alkanethiols, the grafting mechanism was through the formation of ionic or covalent bonds involving thiolates. The most prominent result of this comparative study is that thiol-based SAMs are more strongly attached to the ITO substrate and better organized than fatty acids, which we attribute to the fact that the reaction of the ITO surface with fatty acids is more reversible than that with thiols.  相似文献   

3.
Kelvin probe force microscopy (KPFM) and atomic force microscopy (AFM) are employed to probe the surface potential and topography of octadecyltrichlorosilane [OTS, CH3(CH2)17SiCl3] self-assembled monolayers (SAMs) on oxidized Si(100) and polycrystalline silicon surfaces as a function of deposition temperature and substrate roughness with particular attention paid to the monitoring of SAM adsorption on highly rough surfaces. In these studies, it is found that the surface potential magnitude of the adsorbed layer is larger for monolayers formed in the liquid-condensed (LC) phase than for those formed in the liquid-expanded (LE) phase. Experiments on individual islands in the LC phase show that surface potential and monolayer thickness increase with increasing island size; islands larger than about 1.5 microm reach maximum potential and height values of 48+/-4 mV and 2.7+/-0.1 nm, with respect to the underlying oxidized surface. It is also shown that KPFM is suitable for the study of monolayer adsorption on polycrystalline surfaces, for which preexisting surface texture makes the use of traditional scanning probe techniques for molecular recognition difficult. In these scenarios it is shown that OTS growth occurs preferentially along grain boundaries in fingerlike patterns having a molecular arrangement comparable to that of LC phase islands on atomically smooth silicon. These findings indicate that surface potential measurements provide a highly accurate, local means of probing monolayer morphology on rough surfaces encountered in many applications.  相似文献   

4.
The effect of roughness on the dewetting behavior of polyethylene thin films on silicon dioxide substrates is presented. Smooth and rough silicon dioxide substrates of 0.3 and 3.2-3.9 nm root-mean-square roughness were prepared by thermal oxidation of silicon wafers and plasma-enhanced chemical vapor deposition on silicon wafers, respectively. Polymer thin films of approximately 80 nm thickness were deposited by spin-coating on these substrates. Subsequent dewetting and crystallization of the polyethylene were observed by hot-stage optical microscopy in reflection mode. During heating, the polymer films melt and dewet on both substrates. Further observations after cooling indicate that, whereas complete dewetting occurs on the smooth substrate surface, partial dewetting occurs for the polymer film on the rough surface. The average thickness of the residual film on the rough surface was determined by ellipsometry to be a few nanometers, and the spatial distribution of the polymer in the cavities of the rough surface could be obtained by X-ray reflectometry. The residual film originates from the impregnation of the porous surface by the polymer fluid, leading to the observed partial dewetting behavior. This new type of partial dewetting should have important practical consequences, as most real surfaces exhibit significant roughness.  相似文献   

5.
We report thiol-on-gold self-assembled monolayers (SAMs) that can be photodeprotected using soft UV irradiation (lambda = 365 nm) to yield CO(2)H functionalized surfaces complementing those reported previously, which yielded NH(2) functionalized surfaces. The photolysis of these SAMs were monitored using a combination of surface sensitive techniques. In the SAM environment the photodeprotection yields are lower than those obtained for equivalent reactions in dilute solution. The protected carboxylic acids SAMs are shown to have a low yield approximately 50% due to competing photoreduction reactions of the nitro group. The results from infrared studies show that, as the photolysis progresses, the long chain protected residues reorganize and shield the functional COOH groups, thereby reducing the hydrophilic character of the surface.  相似文献   

6.
Superhydrophobic surfaces in Wenzel and metastable wetting state were prepared and the conversion of such surfaces to ultraphobic surfaces was reported by the application of a fine-scale roughness. Silicon nitride substrates with hexagonally arranged pillars were prepared by micromachining. The two-scale roughness was achieved by coating these substrates with 60 nm silica nanoparticles. The surface was made hydrophobic by silanization with octadecytrichlorosilane (OTS). Wettability studies of the silicon nitride flat surface, silicon nitride pillars, and the surfaces with two-scale roughness showed that a two-scale roughness can effectively improve the hydrophobicity of surfaces with a higher apparent contact angle and reduced contact angle hysteresis when the original rough surface was in a metastable or Wenzel state. This study shows the pathway of converting a metastable hydrophobic surface to an ultraphobic surface by the introduction of a fine-scale roughness, which adds to the literature a new aspect of fine-scale roughness effect.  相似文献   

7.
Biointegration of titanium implants in the body is controlled by their surface properties. Improving surface properties by coating with a bioactive polymer is a promising approach to improve the biological performance of titanium implants. To optimize the grafting processes, it is important to fully understand the composition and structure of the modified surfaces. The main focus of this study is to provide a detailed, multitechnique characterization of a bioactive poly(sodium styrene sulfonate) (pNaSS) thin film grafted from titanium surfaces via a two-step procedure. Thin titanium films (~50 nm thick with an average surface roughness of 0.9 ± 0.2 nm) prepared by evaporation onto silicon wafers were used as smooth model substrates. X-ray photoelectron spectroscopy (XPS) and time-of-flight secondary ion mass spectrometry (ToF-SIMS) showed that the titanium film was covered with a TiO(2) layer that was at least 10 nm thick and contained hydroxyl groups present at the outermost surface. These hydroxyl groups were first modified with a 3-methacryloxypropyltrimethoxysilane (MPS) cross-linker. XPS and ToF-SIMS showed that a monolayer of the MPS molecules was successfully attached onto the titanium surfaces. The pNaSS film was grafted from the MPS-modified titanium through atom transfer radical polymerization. Again, XPS and ToF-SIMS were used to verify that the pNaSS molecules were successfully grafted onto the modified surfaces. Atomic force microscopy analysis showed that the film was smooth and uniformly covered the surface. Fourier transform infrared spectroscopy indicated that an ordered array of grafted NaSS molecules were present on the titanium surfaces. Sum frequency generation vibration spectroscopy and near edge X-ray absorption fine structure spectroscopy illustrated that the NaSS molecules were grafted onto the titanium surface with a substantial degree of orientational order in the styrene rings.  相似文献   

8.
采用自组装技术在单晶硅表面制备了3-氨基丙基三乙氧基硅烷(APTES)-SiO2-APTES复合膜,并对其表面的组成、结构及摩擦性能进行了表征.结果表明:复合膜表面对水的接触角约为63°,且表面平整、致密,其平均粗糙度(Ra)约为0.963nm.通过原子力显微镜(AFM)和透射电子显微镜(TEM)观察到夹层中SiO2颗粒的粒径约为20-50nm,较均匀地分布在第一层APTES膜的表面.与APTES自组装单层膜(SAMs)相比,APTES-SiO2-APTES复合膜由于纳米SiO2颗粒的引入而表现出更低的摩擦系数和更长的耐磨寿命.  相似文献   

9.
In spite of intensive studies over the past two decades, the influence of surface properties on bacterial adhesion and biofilm formation remains unclear, particularly on late steps. In order to contribute to the elucidation of this point, we compared the impact of two different substrates on the formation of bacterial biofilm, by analysing bacterial amount and biofilm structure on hydrophilic and hydrophobic surfaces. The surfaces were constituted by NH2- and CH3-terminated self-assembled monolayers (SAMs) on silicon wafers, allowing to consider only the surface chemistry influence because wafers low roughness. A strain of Escherichia coli K12, able to produce biofilm on abiotic surfaces, was grown with culture durations varying from 4 h to 336 h on both types of substrates. The amount of adhered bacteria was determined after detachment by both photometry at 630 nm and direct counting under light microscope, while the spatial distribution of adhered bacteria was observed by fluorescence microscopy. A general view of our results suggests a little influence of the surface chemistry on adherent bacteria amount, but a clear impact on dynamics of biofilm growth as well as on biofilm structure. This work points out how surface chemistry of substrates can influence the bacterial adhesion and the biofilm formation.  相似文献   

10.
Mixed thiol self‐assembled monolayers (SAMs) presenting methyl and azobenzene head groups were prepared by chemical substitution from the original single‐component n‐decanethiol or [4‐(phenylazo)phenoxy]hexane‐1‐thiol SAMs on polycrystalline gold substrates. Static contact‐angle measurements were carried out to confirm a change in the hydrophobicity of the functionalized surfaces following the exchange reaction. The mixed SAMs presented contact‐angle values between those of the more hydrophobic n‐decanethiol and the more hydrophilic [4‐(phenylazo)phenoxy]hexane‐1‐thiol single‐component SAMs. By means of tip‐enhanced Raman spectroscopy (TERS) mapping experiments, it was possible to highlight that molecular replacement takes place easily and first at grain boundaries: for two different mixed SAM compositions, TERS point‐by‐point maps with <50 nm step sizes showed different spectral signatures in correspondence to the grain boundaries. An example of the substitution extending beyond grain boundaries and affecting flat areas of the gold surface is also shown.  相似文献   

11.
Transparent and conductive single-walled carbon nanotube (SWNT) films are of great importance to a number of applications such as optical and electronic devices. Here, we describe a simple approach for preparing free-standing highly conductive transparent SWNT films with a 20-150 nm thickness by spray coating from surfactant-dispersed aqueous solutions of SWNTs synthesized by an improved floating-catalyst growth method. After the HNO(3) treatment, dipping the SWNT films supporting on glass substrates in water resulted in a quick and nondestructive self-release to form free-standing ultrathin SWNT films on the water surface. The obtained films have sufficiently high transmittance (i.e., 95%), a very low sheet resistance (i.e., ~120 Ω/sq), and a small average surface roughness (i.e., ~3.5 nm for a displayed 10 × 10 μm area). Furthermore, the floating SWNT films on the water surface were easily transferred to any substrates of interest, without intense mechanical and chemical treatments, to preserve their original sizes and network structures. For example, the transferred SWNT films on poly(ethylene terephthalate) films are mechanically flexible, which is a great advantage over conventional indium-tin oxide (ITO) and therefore strongly promise to be "post ITO" for many applications.  相似文献   

12.
Self-assembled monolayers (SAMs) enable significant changes in the surface energy and/or specific interactions of surfaces, which are desirable for microelectromechanical systems (MEMS), superhydrophobic coatings, sensors, and other applications. However, SAMs often exhibit poor durability and rapid degradation upon mechanical, thermal, or moisture exposure. The chemical and orientational changes in SAMs due to mechanical and thermal degradation were investigated using near-edge X-ray absorption fine structure (NEXAFS) and the water contact angle. SAMs were based on unfluorinated or fluorinated linear hydrocarbons that form highly oriented and densely packed structures on silicon substrates. Complex chemical and orientational changes were observed via NEXAFS following degradation. Under heating in a dry, oxygen-rich environment, unfluorinated SAMs tended to cleave at C-C bonds on the main chain; below 250 °C, CH(3) groups were sequentially cleaved toward the surface, whereas above 250 °C, remaining hydrocarbon groups were converted to a graphitic coating dominated by C═C bonds. Under similar conditions, fluorinated SAMs began their chemical degradation at 350 °C and above, although the orientation decreased steadily from 150 to 300 °C; at and above 350 °C, the preferential removal of F occurred and the SAM was slowly converted to a graphitic layer. By contrast, under vacuum the fluorinated molecules were very thermally stable, showing good stability up to 550 °C; when degradation occurred, entire molecules were removed. Mechanical degradation followed two routes; both unfluorinated and fluorinated SAMs that were mechanically rubbed with smooth surfaces exhibited severe chemical degradation of the molecules, leading to an amorphous and poorly defined layer with C═C, C-C, C-H, and C-F bonds. Unfluorinated and fluorinated surfaces that were mechanically rubbed in the presence of free silicon particulates showed the rapid and complete destruction of both the molecular orientation and the protective SAM layer, even for short exposure periods. The resulting NEXAFS spectra were very similar to those produced by heating to 550 °C, suggesting that the friction created by granular particles may lead to extreme local heating.  相似文献   

13.
The paper reports on the preparation of superhydrophobic amorphous silicon oxide nanowires (a-SiONWs) on silicon substrates with a contact angle greater than 150 degrees by means of surface roughness and self-assembly. Nanowires with an average mean diameter in the range 20-150 nm and 15-20 microm in length were obtained by the so-called solid-liquid-solid (SLS) technique. The porous nature and the high roughness of the resulting surfaces were confirmed by AFM imaging. The superhydrophobicity resulted from the combined effects of surface roughness and chemical modification with fluorodecyl trichlorosilane.  相似文献   

14.
Surface treatment procedures such as grinding and polishing are needed to provide the ceramic dental restorative materials with proper fitting and occlusion. The treated surfaces are customarily glazed to improve the strength and smoothness. Though smoothness and wetting of the dental surfaces are important to minimize bacterial plaque retention, influence of the surface treatment and glazing procedures on the final surface roughness and its correlation to wettability are overlooked.

In this work, effect of various treatment (diamond fraising, stoning, sanding and aluminum oxide and rubber polishing) and glazing (auto and overglazing) techniques on the final roughness and the resulting wettability of dental ceramic surfaces were investigated using scanning electron microscopy (SEM) observations and atomic force microscopy (AFM) scans, 75 scans per sample. The surfaces were characterized and assigned an average roughness measure, Ra. The wettability of the same surfaces was evaluated using micro-contact angle measurements (25 micro-bubbles placed on a grid on each surface) to correlate the final surface roughness and wettability.

The results show that overglazing prevails over surface irregularities from different treatment procedures and provides homegeneously smooth surfaces with mean Ra < 10 nm. It also produces uniformly wetted surfaces with low contact angles around 20°. The autoglazed surfaces are less smooth (mean Ra around 50 nm) and displays sporadic topographic irregularities. They display larger and less uniform contact angles ranging between 35° and 50°. The results suggest that overglazing should be preferred after surface treatment to obtain a smooth and well-wetted dental ceramic surface.  相似文献   


15.
We compare two routes for creating protein adsorption-resistant self-assembled monolayers (SAMs) by chemical modification of silicon surfaces with poly(ethylene oxide) (PEO) oligomeric derivatives. The first route involves the assembly of 2-methyl[(polyethyleneoxy)propyl]trichlorosilane (Cl3SiMPEO) films onto oxidized silicon surfaces (OH-SiO(x)) either by a liquid-phase process at room temperature or by a gas-phase process at 423 K, producing Si-O-Si bonds between the substrate and the organic layer. The second pathway makes use of the assembly of poly(ethylene glycol methyl ether) (MPEG) films onto hydrogen-passivated silicon surfaces (H-Si) using a liquid-phase process at 353 or 423 K, leading to the formation of Si-O-C bonds between the substrate and the organic layer. Structural investigation by X-ray reflectometry (XRR) reveals that the thickness and surface densities of the grafted PEO monolayers strongly depend on experimental conditions such as temperature and grafting time. Atomic force microscopy (AFM) shows that very smooth and homogeneous monolayers can be obtained with average roughnesses close to those measured on the corresponding bare substrates. Finally, the antifouling properties of the modified silicon surfaces were evaluated by X-ray photoelectron spectroscopy (XPS), using a membrane protein (P.69 antigen) as model protein. Both types of PEO monolayers exhibit excellent protein repellency, as soon as the grafting density is equal to or higher than 1.7 chains/nm2.  相似文献   

16.
“Simple” silica films of 50 nm and 100 nm thickness are sputter‐coated onto ITO substrates and shown to be structured with in‐planed features of ca. 15 nm and pores <5 nm (based on GISAXS). In electrochemical measurements membrane pore effects are observed. The oxidation current for Fe(CN)64? in aqueous KNO3 strongly depends on the electrolyte concentration. Poly‐cationic poly(diallyl‐dimethylammonium) (PDDA) cannot enter these pores, but is adsorbed onto the outer surface of the silica film. During gold electrodeposition, PDDA causes growth of “discs”. Gold deposits adhere well and a comparison of glucose electrooxidation activity reveals significant improvements.  相似文献   

17.
The preparation of self-assembled monolayers (SAMs) of organophosphonic acids on indium tin oxide (ITO) surfaces from different solvents (triethylamine, ethyl ether, tetrahydofuran (THF), pyridine, acetone, methanol, acetonitrile, dimethyl sulfoxide (DMSO), or water) has been performed with some significant differences observed. Cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), scanning tunneling microscopy (STM), and contact angle measurement demonstrated that the quality of SAMs depends critically on the choice of solvents. Higher density, more stable monolayers were formed from solvents with low dielectric constants and weak interactions with the ITO. It was concluded low dielectric solvents that were inert to the ITO gave monolayers that were more stable with a higher density of surface bound molecules because higher dielectric constant solvents and solvents that coordinate with the surface disrupted SAM formation.  相似文献   

18.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are extensively used to modify substrates to prevent nonspecific protein adsorption and to increase hydrophilicity. X-ray photoelectron spectroscopy analysis, complemented by water contact angle measurements, is employed to investigate the formation and stability upon aging and heating of PEG monolayers formed on gold and silicon nitride substrates. In particular, thiolated PEG monolayers on gold, with and without the addition of an undecylic spacer chain, and PEG monolayers formed with oxysilane precursors on silicon nitride have been probed. It is found that PEG-thiol SAMs are degraded after less than two weeks of exposure to air and when heated at temperatures as low as 120 degrees C. On the contrary, PEG-silane SAMs are stable for more than two weeks, and fewer molecules are desorbed even after two months of aging, compared to those desorbed in two weeks from the PEG-thiol SAMs. A strongly bound hydration layer is found on PEG-silane SAMs aged for two months. Heating PEG-silane SAMs to temperatures as high as 160 degrees C improves the quality of the monolayer, desorbing weakly bound contaminants. The differences in stability between PEG-thiol SAMs and PEG-silane SAMs are ascribed to the different types of bonding to the surface and to the fact that the thiol-Au bond can be easily oxidized, thus causing desorption of PEG molecules from the surface.  相似文献   

19.
Thymine-functionalized SAM-protected gold nanoparticles with diameters of 2.2 +/- 0.3 nm and 7.0 +/- 1.0 nm were prepared via a modified two-phase transfer method. UV-vis spectra showed that particle size and solvent type, as well as surface charge, influenced the gold surface plasmon band absorption, along with the interaction between thymine terminal groups in the solution. Although the bulky thymine end groups interacted strongly on the particle surface, a well-ordered monolayer of thyminethiol derivatives with a long hydrocarbon chain was formed on the particle surface, exhibiting an ordered, all-trans conformation of the methylene backbone, similar to those of corresponding self-assembled monolayers (SAMs) generated from normal alkanethiols. A larger particle size and a longer reaction time facilitated the formation of more ordered thymine-terminated thiol SAMs. Thermal analysis indicated that reorientation of the SAMs during heat treatment occurred by two processes, caused possibly by the separate recrystallization of the hydrocarbon long chains and thymine units. More ordered SAMs with a higher thermal stability were formed on the larger particle surfaces when compared with those on the smaller ones. A greater density of molecular packing was found on the smaller particle surfaces. However, SAMs formed on the larger gold particles resembled 2D SAMs on the smooth, flat gold surfaces. XPS results confirmed the thymine structure as well as the chemical bond between gold and sulfur. One type of adsorbed sulfur species was observed for the smaller particles and two for the larger ones, but a slightly higher binding energy of thiolate was found for the smaller ones.  相似文献   

20.
We describe the formation and characterization of surface-passivating poly(ethylene glycol) (PEG) films on indium tin oxide (ITO) glass substrates. PEG chains with a molecular weight of 2000 and 5000 D were covalently attached to the substrates in a systematic approach using different coupling schemes. The coupling strategies included the direct grafting with PEG-silane, PEG-methacrylate, and PEG-bis(amine), as well as the two-step functionalization with aldehyde-bearing silane films and subsequent coupling with PEG-bis(amine). Elemental analysis by X-ray photoelectron spectroscopy (XPS) confirmed the successful surface modification, and XPS and ellipsometry provided values for film thicknesses. XPS and ellipsometry thickness values were almost identical for PEG-silane films but differed by up to 400% for the other PEG layers, suggesting a homogeneous layer for PEG-silane but an inhomogeneous distribution for other PEG coatings on the molecularly rough ITO substrates. Atomic force microscopy (AFM) and water contact angle goniometry confirmed the different degrees of surface homogeneity of the polymer films, with PEG-silane reducing the AFM rms surface roughness by 50% and the water contact angle hysteresis by 75% compared to uncoated ITO. The ability of the PEG layers to passivate the substrate against the nonspecific adsorption of biopolymers was tested using fluorescence-labeled immunoglobulin G and DNA oligonucleotides in combination with fluorescence microscopy. The results indicate a positive relationship between film density and homogeneity on one hand and the ability to passivate against biopolymer adhesion on the other hand. The most homogeneous layers prepared with PEG-silane reduced the nonspecific adsorption of fluorescence-labeled DNA by a factor of 300 compared to uncoated ITO. In addition, the study finds that the ratio of film thicknesses derived by ellipsometry and XPS is a useful parameter to quantify the structural integrity of PEG layers on molecularly rough ITO surfaces. The findings may be applied to characterize PEG or other polymeric films on similarly coarse substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号