首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An amperometric dipyrone sensor based on a polymeric nickel-salen (salen = N,N´-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. After cycling the modified electrode in a 0.50 mol L-1 KCl solution, the estimated surface concentration was found to be equal to 1.29 x 10-9 mol cm-2. This is a typical behavior of an electrode surface immobilized with a redox couple that can usually be considered as a reversible single-electron reduction/oxidation of the nickel(II)/nickel(III) couple. A plot of the anodic current versus the dipyrone concentration for chronoamperometry (potential fixed = +0.50 V) at the sensor was linear in the 4.7 x 10-6 to 1.1 x 10-4 mol L-1 concentration range and the concentration limit was 1.2 x 10-6 mol L-1. The proposed electrode is useful for the quality control and routine analysis of dipyrone in pharmaceutical formulations.  相似文献   

2.
A mesoporous silica was synthesised and used to modify the surface of carbon paste electrode (CPE). The electrochemical behaviours of p-aminophenol were investigated. Compared to the unmodified CPE, the mesoporous silica-modified CPE obviously lowers the oxidation potential of p-aminophenol, and remarkably increases its oxidation peak current. The effects of pH value, amount of mesoporous silica, accumulation potential and time were examined. As a result, a sensitive, rapid and convenient electroanalytical method was developed for p-aminophenol. The linear range is from 0.025?mg?L?1 to 3?mg?L?1, and the limit of detection is 0.01?mg?L?1 after 2-min accumulation. Finally, the method was successfully used to determine p-aminophenol in water samples.  相似文献   

3.
The current work aimed to fabricate a new cocaine sensor of octahedral palladium-doped cobaltite composite (Oh-Pd2+ : Co3O4-C) using a simple hydrothermal protocol. As-fabricated cocaine sensing approach was validated by various methods. Energy dispersive X-ray analysis, X-ray diffraction and scanning electron microscopy were recruited to characterize our charged modified composite. The electrode could sensitively detect cocaine, with a lengthy linear range (0.01 μM–900.0 μM) and a limit of detection (1.3 nM). The quantitative cocaine determination was achieved in the biological specimens using our modified electrode, the results of which displayed admirable outcomes.  相似文献   

4.
Journal of Solid State Electrochemistry - Chirality is a universal characteristic of natural systems and discrimination of enantiomers of a chiral molecule plays a major role particularly in...  相似文献   

5.
A sensitive hydrazine sensor has been fabricated using copper oxide nanoparticles modified glassy carbon electrode (GCE) to form nano-copper oxide/GCE. The nano-copper oxide was electrodeposited on the surface of GCE in CuCl2 solution at −0.4 V and was characterized by Scanning electron microscopy and X-ray diffraction. The prepared modified electrode showed a good electrocatalytic activity toward oxidation of hydrazine. The electrochemical behavior of hydrazine on nano-copper oxide/GCE was explored. The oxidative current increased linearly with improving concentration of hydrazine on nano-copper oxide/GCE from 0.1 to 600 μM and detection limit for hydrazine was evaluated to be 0.03 μM at a signal-to-noise ratio of 3. The oxidation mechanism of hydrazine on the nano-copper oxide/GCE was also discussed. The fabricated sensor could be used to determine hydrazine in real water.  相似文献   

6.
In this article, an electrochemical sensor based on a gold nanocage (AuNC)‐modified carbon ionic liquid electrode (CILE) was fabricated and applied to the sensitive rutin determination. The presence of AuNCs on the electrode surface greatly improved the electrochemical performance of the working electrode due to its specific microstructure and high metal conductivity. Electrochemical behavior of rutin on AuNCs/CILE was studied using cyclic voltammetry and differential pulse voltammetry with the related electrochemical parameters calculated. Under the optimal experimental conditions, the oxidation peak current of rutin and its concentration had good linear relationship in the range from 4.0 × 10?9 to 7.0 × 10?4 mol/L with a low detection limit of 1.33 × 10?9 mol/L (3σ). This fabricated AuNCs/CILE was applied to direct detection of the rutin concentration in drug samples with satisfactory results, showing the real application of AuNCs in the field of chemically modified electrodes.  相似文献   

7.
Zhuang Z  Su X  Yuan H  Sun Q  Xiao D  Choi MM 《The Analyst》2008,133(1):126-132
CuO nanowires have been prepared and applied for the fabrication of glucose sensors with highly enhanced sensitivity. Cu(OH)(2) nanowires were initially synthesised by a simple and fast procedure, CuO nanowires were then formed simply by removing the water through heat treatment. The structures and morphologies of Cu(OH)(2) and CuO nanowires were characterised by X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, and transmission electron microscopy. The direct electrocatalytic oxidation of glucose in alkaline medium at CuO nanowire modified electrodes has been investigated in detail. Compared to a bare Cu electrode, a substantial decrease in the overvoltage of the glucose oxidation was observed at the CuO nanowire electrodes with oxidation starting at ca. 0.10 V vs. Ag/AgCl (saturated KCl). At an applied potential of 0.33 V, CuO nanowire electrodes produce high and reproducible sensitivity to glucose with 0.49 microA/micromol dm(-3). Linear responses were obtained over a concentration range from 0.40 micromol dm(-3) to 2.0 mmol dm(-3) with a detection limit of 49 nmol dm(-3) (S/N = 3). The CuO nanowire modified electrode allows highly sensitive, low working potential, stable, and fast amperometric sensing of glucose, thus is promising for the future development of non-enzymatic glucose sensors.  相似文献   

8.
A simple and effective method for the detection of electrochemically inactive sodium dodecyl sulfate (SDS) has been designed, based on different binding affinity of polyethyleneimine (PEI) toward electrochemically active eosin Y and electrochemically inactive SDS. The stronger binding affinity of the PEI toward SDS than eosin Y results in the decrease of the redox peak current of surface confined eosin Y and provides a quantitative readout for the SDS. The difference in value of the cathodic peak current showed a linear relationship with SDS concentration in a concentration range from 1 to 40 μg mL−1, and a detection limit of 0.9 μg mL−1 for SDS was obtained. Furthermore, the method has been successfully applied to the detection of SDS in real samples. The developed approach provided a simple and reliable detection for SDS and might have potential applications in electrochemical methods for inactive molecules.  相似文献   

9.
This work describes the electrochemical behavior of copper(II)-bis[5-((4-n-decyloxyphenyl)azo)-N-(nethanol)-salicylaldiminato]film immobilized on the surface of multiwall carbon nanotube glassy carbon electrode and its electrocatalytic activity toward the oxidation of L-cysteine. The surface structure and composition of the sensor was characterized by scanning electron microscopy. Electrocatalytic oxidation of L-cysteine on the surface of modified electrode was investigated with cyclic voltammetry, chronoamperometry and hydrodynamic amperometery methods and the results showed that the Cu-Schiff base film displays excellent electrochemical catalytic activities towards L-cysteine oxidation. The modified electrode indicated reproducible behavior and high level of stability during the electrochemical experiments.  相似文献   

10.
Reisberg S  Dang LA  Nguyen QA  Piro B  Noel V  Nielsen PE  Le LA  Pham MC 《Talanta》2008,76(1):206-210
An electrochemical hybridization biosensor based on peptide nucleic acid (PNA) probe is presented. PNA were attached covalently onto a quinone-based electroactive polymer. Changes in flexibility of the PNA probe strand upon hybridization generates electrochemical changes at the polymer-solution interface. A reagentless and direct electrochemical detection was obtained by detection of the electrochemical changes using square wave voltammetry (SWV). An increase in the peak current of quinone was observed upon hybridization of probe on the target, whereas no change is observed with non-complementary sequence. In addition, the biosensor is highly selective to effectively discriminate a single mismatch on the target sequence. The sensitivity is also presented and discussed.  相似文献   

11.
In the present work, nickel-zeolite modified carbon paste electrode (Ni-ZMCPE) was prepared. The electrochemical behaviour of hydrogen peroxide at the surface of modified electrode was investigated by cyclic voltammetry and chronoamperometry in 0.1 M NaOH supporting electrolyte. The electrochemical characterization of Ni-ZMCPE exhibits redox behavior of Ni(III)/Ni(II) couple in alkaline medium. It has been shown that Ni-ZMCPE improves efficiency of the modified electrode toward hydrogen peroxide electrooxidation (It wasn’t remarkable different on ZMCPE and CPE in the presence and absence of hydrogen peroxide). Moreover, the effects of various parameters such as effect of different percents of Ni-Z to graphite, effect of pH and hydrogen peroxide concentration on the electrooxidation of hydrogen peroxide as well as stability of the Ni-ZMCPE have also been investigated. Under the selected conditions, the anodic peak current was linearly dependent on the concentration of hydrogen peroxide in the range 0.03–0.1 and 0.3–6 mM with amperometric method. The detection limit (S/N = 3) was also estimated to be 1 μM.  相似文献   

12.
The electrolytic sensor described is based on the oxidation of nitrite at a platinum electrode modified with chemisorbed iodine and coated with a thin layer of quaternized poly(4-vinylpyridine), qPVP. The sealed sensor uses an anion-exchange membrane to separate Donnan transport of nitrite across the membrane and controlled potential electrolysis at the Pt/qPVP indicator electrode. The sensor has a linear response to nitrate concentration in aqueous samples over the range 4 × 10?6?2 × 10?3 M nitrite. The detection limit is 2 × 10?6 M nitrite. The sensor is free of interference by nitrate, dissolved oxygen, cations, and many neutral species. Anions that are electroactive at 0.7 V vs. Ag/ AgCl would interfere, but they are uncommon in most samples. Initial tests with lake water samples suggest that this sensor is unaffected by this matrix. The system was also evaluated for monitoring nitrite levels in spiked meat extracts.  相似文献   

13.
Hun  Xu  Wang  Shanshan  Mei  Shuyu  Qin  Hongqing  Zhang  Hui  Luo  Xiliang 《Mikrochimica acta》2017,184(9):3333-3338
Microchimica Acta - The authors have prepared SnSe nanosheets by a solvothermal method and used them to modify a gold electrode to obtain a photoelectrochemical (PEC) sensor for dopamine (DA) which...  相似文献   

14.
Lei  Yan  Yang  Fan  Li  Yu-Tao  Tang  Lina  Chen  Keli  Zhang  Guo-Jun 《Mikrochimica acta》2017,184(7):2299-2305
Microchimica Acta - The authors describe the construction of a renewable electrochemical method for determination of honokiol in complex traditional Chinese herbs. A nanocomposite consisting of...  相似文献   

15.
A glucose sensor is prepared by adsorption of the mediator Meldola blue (N,N-dimethyl-7-amino-1,2-benzophenoxazinium ion, as well as glucose dehydrogenase, on the surface of a carbon electrode. The nicotinamide coenzyme, whhich is present in the solution, is reduced in the enzymatic reaction and is re-oxidized amperometrically at 0 mV vs. Ag/AgCl. The properties of such electrodes depend on whether the mediator or the enzyme is adsorbed first; possible models for the molecular arrangements at the surface are discussed. The modified electrode is mounted in a flow-through cell in a flow-injection system and tested with 50-μl injections of β-d-glucose. The calibration graphs were linear in the range 5 × 10?6—2 × 10?3 M βd glucose with the highest sensitivity at pH 6.0. The membrane-free enzyme electrode has a fast response; peak widths are 12 s at half height (flow rate 0.7 ml min?1, making it possible to process 100 samples h?1.  相似文献   

16.
We have developed a simple and ultrasensitive E-DNA sensor based on the ssDNA-assisted cascade of a hybridization reaction mechanism to form a long concatamers structure to improve its sensitivity, significantly. The proposed sensor was applied to sequence-specific DNA and ATP detection. Experimental results showed a quantitative measurement with the detection limit as low as 1 aM for specific DNA and 10 fM for ATP.  相似文献   

17.
采用水热法合成了纳米氧化锌-氧化石墨烯复合材料,并基于该复合材料构制了一种新型双酚A传感器,研究了该传感器的电化学行为。结果表明,在含8.0×10-5mol/L CTAB的p H 7.0磷酸盐缓冲液中,双酚A在0.573V处出现1个不可逆的氧化峰,具有良好的电化学响应;其氧化峰电流与浓度在1.0×10-8~4.0×10-5mol/L范围内呈良好的线性关系,检出限为5.0×10-9mol/L;对模拟环境水样中双酚A进行3次平行测定的回收率在96.3%~101.9%之间,相对误差在1.2%~3.8%范围内。该传感器具有灵敏度高、线性范围宽的特点。  相似文献   

18.
In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr2Nb2O15. The material KSr2Nb2O15 is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10-5 at 1.62 x 10-3 mol L-1 (E (mV) = 32.7 + 51.1 log [K+]). The sensor based KSr2Nb2O15, of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 °C) and detection limit for the potassium ions of 7.27 x 10-5 mol.L-1.  相似文献   

19.
20.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号