首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To study the flexibility of strychnine, we performed molecular dynamics simulations with orientational tensorial constraints (MDOC). Tensorial constraints are derived from nuclear magnetic resonance (NMR) interaction tensors, for instance, from residual dipolar couplings (RDCs). Used as orientational constraints, they rotate the whole molecule and molecular parts with low rotational barriers. Since the NMR parameters are measured at ambient temperatures, orientational constraints generate conformers that populate the whole landscape of Gibbs free energy. In MDOC, structures are populated that are not only controlled by energy but by the entropy term TΔS of the Gibbs free energy. In the case of strychnine, it is shown that ring conformers are populated, which has not been discussed in former investigations. These conformer populations are not only in accordance with RDCs but fulfill nuclear Overhauser effect (NOE)-derived distance constraints and 3JHH couplings as well.  相似文献   

2.
Insensitive towards inversion: Can residual dipolar couplings (RDCs) and other anisotropic NMR observables be used to determine absolute configuration? A critical assessment of recent approaches is provided to determine the absolute configuration from RDCs.  相似文献   

3.
Characterization of the conformational ensemble of disordered proteins is highly important for understanding protein folding and aggregation mechanisms, but remains a computational and experimental challenge owing to the dynamic nature of these proteins. New observables that can provide unique insights into transient residual structures in disordered proteins are needed. Here using denatured ubiquitin as a model system, NMR solvent paramagnetic relaxation enhancement (sPRE) measurements provide an accurate and highly sensitive probe for detecting low populations of residual structure in a disordered protein. Furthermore, a new ensemble calculation approach based on sPRE restraints in conjunction with residual dipolar couplings (RDCs) and small‐angle X‐ray scattering (SAXS) is used to define the conformational ensemble of disordered proteins at atomic resolution. The approach presented should be applicable to a wide range of dynamic macromolecules.  相似文献   

4.
5.
G-matrix Fourier transform (GFT) NMR spectroscopy is presented for accurate and precise measurement of chemical shifts and nuclear spin-spin couplings correlated according to spin system. The new approach, named "J-GFT NMR", is based on a largely extended GFT NMR formalism and promises to have a broad impact on projection NMR spectroscopy. Specifically, constant-time J-GFT (6,2)D (HA-CA-CO)-N-HN was implemented for simultaneous measurement of five mutually correlated NMR parameters, that is, 15N backbone chemical shifts and the four one-bond spin-spin couplings 13Calpha-1Halpha, 13Calpha-13C', 15N-13C', and 15N-1HNu. The experiment was applied for measuring residual dipolar couplings (RDCs) in an 8 kDa protein Z-domain aligned with Pf1 phages. Comparison with RDC values extracted from conventional NMR experiments reveals that RDCs are measured with high precision and accuracy, which is attributable to the facts that (i) the use of constant time evolution ensures that signals do not broaden whenever multiple RDCs are jointly measured in a single dimension and (ii) RDCs are multiply encoded in the multiplets arising from the joint sampling. This corresponds to measuring the couplings multiple times in a statistically independent manner. A key feature of J-GFT NMR, i.e., the correlation of couplings according to spin systems without reference to sequential resonance assignments, promises to be particularly valuable for rapid identification of backbone conformation and classification of protein fold families on the basis of statistical analysis of dipolar couplings.  相似文献   

6.
NMR-based determination of the configuration of complex molecules containing many stereocenters is often not possible using traditional NOE data and coupling patterns. Making use of residual dipolar couplings (RDCs), we were able to determine the relative configuration of a natural product containing seven stereocenters, including a chiral amine lacking direct RDC data. To identify the correct relative configuration out of 32 possible ones, experimental RDCs were used in three different approaches for data interpretation: by fitting experimental data based singular value decomposition (SVD) using a single alignment tensor and either (i) a single conformer or (ii) multiple conformers, or alternatively (iii) using molecular dynamics simulations with tensorial orientational constraints (MDOC). Even though in all three approaches one and the same configuration could be selected and clear discrimination between possible configurations was achieved, the experimental data was not fully satisfied by the methods based on single tensor approaches. While these two approaches are faster, only MDOC is able to fully reproduce experimental results, as the obtained conformational ensemble adequately covers the conformational space necessary to describe the molecule with inherent flexibility.  相似文献   

7.
Residual dipolar couplings (RDCs) have been observed in disordered states of several proteins. While their nonuniform values were initially surprising, it has been shown that reasonable approximation of experimental RDCs can be obtained using simple statistical coil models and assuming global alignment of each structure, provided that many thousands of conformers are averaged. Here we show that, by using short local alignment tensors, we can achieve good agreement between experimental and simulated RDCs with far fewer structures than required when using global alignment. This makes the possibility of using RDCs as direct restraints in structural calculations of disordered proteins much more feasible. In addition, it provides insight into the nature of RDCs in disordered states, suggesting that they are primarily reporting on local structure.  相似文献   

8.
Residual dipolar couplings (RDCs) are widely used as orientation-dependent NMR restraints to improve the resolution of the NMR conformational ensemble of biomacromolecules and define the relative orientation of multidomain proteins and protein complexes. However, the interpretation of RDCs is complicated by the intrinsic degeneracy of analytical solutions and protein dynamics that lead to ill-defined orientations of the structural domains (ghost orientations). Here, we illustrate how restraints from paramagnetic relaxation enhancement (PRE) experiments lift the orientational ambiguity of multidomain membrane proteins solubilized in detergent micelles. We tested this approach on monomeric phospholamban (PLN), a 52-residue membrane protein, which is composed of two helical domains connected by a flexible loop. We show that the combination of classical solution NMR restraints (NOEs and dihedral angles) with RDC and PRE constraints resolves topological ambiguities, improving the convergence of the PLN structural ensemble and giving the depth of insertion of the protein within the micelle. The combination of RDCs with PREs will be necessary for improving the accuracy and precision of membrane protein conformational ensembles, where three-dimensional structures are dictated by interactions with the membrane-mimicking environment rather than compact tertiary folds common in globular proteins.  相似文献   

9.
10.
Protein structure and dynamics can be characterized on the atomistic level with both nuclear magnetic resonance (NMR) experiments and molecular dynamics (MD) simulations. Here, we quantify the ability of the recently presented CHARMM36 (C36) force field (FF) to reproduce various NMR observables using MD simulations. The studied NMR properties include backbone scalar couplings across hydrogen bonds, residual dipolar couplings (RDCs) and relaxation order parameter, as well as scalar couplings, RDCs, and order parameters for side‐chain amino‐ and methyl‐containing groups. It is shown that the C36 FF leads to better correlation with experimental data compared to the CHARMM22/CMAP FF and suggest using C36 in protein simulations. Although both CHARMM FFs contains the same nonbond parameters, our results show how the changes in the internal parameters associated with the peptide backbone via CMAP and the χ1 and χ2 dihedral parameters leads to improved treatment of the analyzed nonbond interactions. This highlights the importance of proper treatment of the internal covalent components in modeling nonbond interactions with molecular mechanics FFs. © 2013 Wiley Periodicals, Inc.  相似文献   

11.
The measurement of residual dipolar couplings (RDCs), meanwhile a standard method for obtaining structural information in biomolecular NMR, requires partial alignment of the sample. Special demands on alignment media so far limit the applicability of this approach to small molecules in organic solvents. Major limitations are the free scalability of alignment and the suppression of residual signals of the alignment medium to allow effective measurement of low-concentration samples. Here, we present stretched poly(dimethylsiloxane) (PDMS) cross-linked by beta-rays as an alignment medium with no visible impurities in 1H NMR spectra but a single signal at approximately 0.1 ppm that can easily be removed by slightly modified water suppression methods. Besides the free scalability, its applicability to the measurement of RDCs in small molecules at low concentration is demonstrated on a approximately 12 mM sample of spiroindene. The induced alignment tensor in this case can be predicted reasonably well by a simplified model on the basis of steric interactions only.  相似文献   

12.
The concept of using residual dipolar couplings (RDCs) for the structure determination of organic molecules is applied to the simultaneous assignment of all diastereotopic protons in strychnine. To use this important NMR parameter the molecule has to be aligned in the magnetic field. Here we present a new alignment medium for organic substrates. The optimization of the alignment properties of mixtures of poly-gamma-ethyl-L-glutamate (PELG) and CDCl(3) are described and the alignment properties of PELG at different concentrations are evaluated. A comparison of PELG with poly-gamma-benzyl-L-glutamate (PBLG) shows considerable differences in the magnitude of alignment for strychnine in the two alignment media. PELG induces a lower degree of order and makes the measurement of residual dipolar couplings (RDCs) in strychnine possible. All one-bond C-H RDCs of strychnine in PELG were determined by using 2D heteronuclear single quantum coherence (HSQC) spectroscopy. The strategy for the extraction of RDCs for methylene groups is described in detail. The RDCs and order parameters are used to assign pairs of diastereotopic protons. This methodology can distinguish not only one pair of diastereotopic protons but it can be used to assign all pairs of diastereotopic protons simultaneously. Two different calculation approaches to achieve this task are described in detail.  相似文献   

13.
Using ab initio metadynamics we have computed the conformational free energy landscape of beta-D-glucopyranose as a function of the puckering coordinates. We show that the correspondence between the free energy and the Stoddard's pseudorotational itinerary for the system is rather poor. The number of free energy minima (9) is smaller than the number of ideal structures (13). Moreover, only six minima correspond to a canonical conformation. The structural features, the electronic properties, and the relative stability of the predicted conformers permit the rationalization of the occurrence of distorted sugar conformations in all the available X-ray structures of beta-glucoside hydrolase Michaelis complexes. We show that these enzymes recognize the most stable distorted conformers of the isolated substrate and at the same time the ones better prepared for catalysis in terms of bond elongation/shrinking and charge distribution. This suggests that the factors governing the distortions present in these complexes are largely dictated by the intrinsic properties of a single glucose unit.  相似文献   

14.
Residual dipolar couplings (RDCs) measured for internally rigid molecular fragments provide important information about the relative orientations of these fragments. Dependent on the symmetry of the alignment tensor and the symmetry of the molecular fragment, however, there generally exist more than one solution for the fragment orientation consistent with the measured RDCs. Analytical solutions are presented that describe the complete set of orientations of internally rigid fragments that are consistent with multiple dipolar couplings measured in a single alignment medium that is rhombic. For the first time, it is shown that, for a planar fragment such as the peptide plane, there generally exist 16 different solutions with their analytical expressions presented explicitly. The presence of these solutions is shown to be highly relevant for standard structure determination protocols using RDCs to refine molecular structures. In particular, when using standard protein structure refinement with RDCs that were measured in a single alignment medium as constraints, it is found that often more than one of the peptide plane solutions is physically viable; i.e., despite being consistent with measured RDCs, the local backbone structure can be incorrect. On the basis of experimental and simulated examples, it is rationalized why protein structures that are refined against RDCs measured in a single medium can have lower resolution (precision) than one would expect on the basis of the experimental accuracy of the RDCs. Conditions are discussed under which the correct solution can be identified.  相似文献   

15.
While residual dipolar couplings (RDCs) are an established method in high-resolution biomolecular NMR, their use for structure determination of small molecules in organic solvents is limited by the alignment media available. Only recently stretched polystyrene (PS) gels were introduced for the measurement of RDCs on small compounds that allowed urgently needed free scalability of the induced anisotropy. Here, the properties of such stretched PS gels in different organic solvents as well as for different magnetic field strengths and temperatures are studied and practical NMR-spectroscopic aspects are discussed.  相似文献   

16.
17.
An example of the use of the J-based configuration analysis method to determine relative stereochemistry of a small molecule related to reboxetine is described. This study was complicated by the fact that the molecule did not exhibit J-couplings and NOEs consistent with a single conformation, but rather an ensemble average. A quantitative fitting procedure using predicted couplings and NOEs from all possible conformers was used. This gave a clear indication of the stereochemistry, and the populations of the conformers involved.  相似文献   

18.
Residual dipolar couplings (RDCs) observed by NMR in solution under weak alignment conditions can monitor average net orientations and order parameters of individual bonds. By their simple geometrical dependence, RDCs bear particular promise for the quantitative characterization of conformations in partially folded or unfolded proteins. We have systematically investigated the influence of amino acid substitutions X on the conformation of unfolded model peptides EGAAXAASS as monitored by their (1)H(Nu)-(15)N and (1)H(alpha)-(13)C(alpha) RDCs detected at natural abundance of (15)N and (13)C in strained polyacrylamide gels. In total, 14 single amino acid substitutions were investigated. The RDCs show a specific dependence on the substitution X that correlates to steric or hydrophobic interactions with adjacent amino acids. In particular, the RDCs for the glycine and proline substitutions indicate less or more order, respectively, than the other amino acids. The RDCs for aromatic substitutions tryptophane and tyrosine give evidence of a kink in the peptide backbone. This effect is also observable for orientation by Pf1 phages and corroborated by variations in (13)C(alpha) secondary shifts and (3)J(HNH)(alpha) scalar couplings in isotropic samples. RDCs for a substitution with the beta-turn sequence KNGE differ from single amino acid substitutions. Terminal effects and next neighbor effects could be demonstrated by further specific substitutions. The results were compared to statistical models of unfolded peptide conformations derived from PDB coil subsets, which reproduce overall trends for (1)H(Nu)-(15)N RDCs for most substitutions, but deviate more strongly for (1)H(alpha)-(13)C(alpha) RDCs. The outlined approach opens the possibility to obtain a systematic experimental characterization of the influence of individual amino acid/amino acid interactions on orientational preferences in polypeptides.  相似文献   

19.
20.
Together with NOE and J coupling, one‐bond residual dipolar coupling (RDC), which reports on the three‐dimensional orientation of an internuclear vector in the molecular frame, plays an important role in the conformation and configuration analysis of small molecules in solution by NMR spectroscopy. When the molecule has few C? H bonds, or too many bonds are in parallel, the available RDCs may not be sufficient to obtain the alignment tensor used for structure elucidation. Long‐range RDCs that connect nuclei over multiple bonds are normally not parallel to the single bonds and therefore complement one‐bond RDCs. Herein we present a method for extracting the long‐range RDC of a chosen proton or group of protons to all remotely connected carbon atoms, including non‐protonated carbon atoms. Alignment tensors fitted directly to the total long‐range couplings (T=J+D) enabled straightforward analysis of both the long‐range and one‐bond RDCs for strychnine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号