首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
There has been ongoing keen interest to mold electronic devices into desired shapes and be laid on desired configurable surfaces. In specific, the ability to design materials that can bend, twist, compress and stretch repeatedly, while still able to maintain its full capability as conductors or electrodes, has led to numerous efforts to develop flexible and stretchable (bio)devices that are both technologically challenging and environmentally friendly (e.g. biodegradable). In this review, we highlight several recent significant results that have made impacts toward the field of flexible and stretchable electronics, sensors and power sources.  相似文献   

2.
Light trapping based on the localized surface-plasmon resonance(LSPR)effect of metallic nanostructures is a promising strategy to improve the device performance of organic solar cells(OSCs).We review recent advances in plasmonic-enhanced OPVs with solution-processed metallic nanoparticles(NPs).The different types of metallic NPs(sizes,shapes,and hybrids),incorporation positions,and NPs with tunable resonance wavelengths toward broadband enhancement are systematically summarized to give a guideline for the realization of highly efficient plasmonic photovoltaics.  相似文献   

3.
Organometallic complexes (OMCs) consisting of organic and metal active moieties have shown immense potential for application in solar cells. The diverse structure, rich porosity, and unique charge centers of OMCs enable them to be functional in solar cells. In this review, we introduced four types of OMCs, such as crown organometallic complexes, β-diketone metal complexes, cyclometallic complexes, and main chain metal-containing polymers, providing an in-depth analysis of the structure-performance relationship. OMCs could serve as active or interlayer materials in a variety of solar cell systems such as organic solar cells, perovskite solar cells, and dye-sensitized solar cells, especially some metals to improve the photoelectric performance of the device as dopants. In the end, perspectives on the opportunities and challenges of OMCs are given.  相似文献   

4.
Cosnier S  Mailley P 《The Analyst》2008,133(8):984-991
The concept of DNA biosensors is sustained by the need for rapid and highly sensitive analytical tools for genetic detection. Their implementation is based on three key steps: (i) immobilization of single-stranded oligonucleotide probes onto a substrate; (ii) hybridization and (iii) reading. These steps involve complementary knowledge in various disciplinary fields such as surface physics and chemistry, molecular electrochemistry, micro-technologies, optics, electronics and biochemistry. We present here, in a non-exhaustive way, the recent advances in the two steps of immobilization and detection that rely upon increasing integration of the number of reading points or/and of the reading strategy.  相似文献   

5.
Aptamers are a series of high-affinity and high-specificity oligoneucleotides (single-stranded DNA or RNA) to the target, usually selected by the combinatorial chemistry SELEX technique (systematic evolution of ligands by exponential enrichment). Aptamers have proved to be one kind of novel functional molecules in life science and chemistry. After being labeled by signaling groups, the aptamer probe can conveniently transfer the characteristics of aptamer-target recognition to a form of high-sensitive signal, and the high-affinity, high-specificity measurements of metal ion, organic molecules, nucleic acid, proteins, or cells become possible. This article summarizes the recent advances of aptamer probes in different sensing fields, with special emphasis on aptamer probes as fluorescent sensors.  相似文献   

6.
Ma Q  Su X 《The Analyst》2011,136(23):4883-4893
As a unique nanomaterial, quantum dots (QDs) are not only applied in fluorescent labeling and biological imaging, but are also utilized in novel sensing systems. Because QDs have attractive optoelectronic characteristics, QD-based sensors present high sensitivity in detecting specific analytes in the chemical and biochemical fields. In this review, we describe the basic principles and different conjugation strategies in QD-based sensors. An overview of recent advances and various models of QD-sensing systems is also provided. Furthermore, perspectives for sensors based on QDs are discussed.  相似文献   

7.
In recent years, fused aromatic dithienobenzodithiophene(DTBDT)-based functional semiconductors have been potential candidates for organic electronics. Due to the favorable features of excellent planarity, strong crystallinity, high mobility, and so on, DTBDT-based semiconductors have demonstrated remarkable performance in organic electronic devices, such as organic feld-effect transistor(OFET), organic photovoltaic(OPV), organic photodetectors(OPDs). Driven by this success, recent developments in the area of DTBDT-based semiconductors for applications in electronic devices are reviewed, focusing on OFET, OPV, perovskite solar cells(PSCs), and other organic electronic devices with a discussion of the relationship between molecular structure and device performance. Finally, the remaining challenges, and the key research direction in the near future are proposed, which provide a useful guidance for the design of DTBDT-based materials.  相似文献   

8.
The abuse of antibiotics will cause an increase of drug-resistant strains and environmental pollution,which in turn will affect human health.Therefore,it is important to develop effective detection techniques to determine the level of antibiotics contamination in various fields.Compared with traditional detection methods,electrochemical sensors have received extensive attention due to their advantages such as high sensitivity,low detection limit,and good selectivity.In this mini review,we summarized the latest developments and new trends in electrochemical sensors for antibiotics.Here,modification methods and materials of electrode are discussed.We also pay more attention to the practical applications of antibiotics electrochemical sensors in different fields.In addition,the existing problems and the future challenges ahead have been proposed.We hope that this review can provide new ideas for the development of electrochemical sensors for antibiotics in the future.  相似文献   

9.
In colloid and nanoparticle chemistry, particle size, shape, crystallinity, surface morphology, and composition are controlled by employing the mechanisms of burst nucleation, diffusional growth, aggregation, or their combinations. Here we review and survey practical examples of recently developed methods for preparing metal colloids and nanoparticles for industrial applications such as photovoltaics, catalysis, and consumer electronics. We discuss relevant theoretical models, many of which are general, and identify growth mechanisms that play a major role in other systems and applications as well.  相似文献   

10.
《中国化学快报》2023,34(6):107904
Over the last 50 years, the explosive adoption of modern agricultural practices has led to an enormous increase in the emission of non-biodegradable and highly biotoxic ions into the hydrosphere. Excess intake of such ions, even essential trace elements such as Cu2+ and F, can have serious consequences on human health. Therefore, to ensure safe drinking water and regulate wastewater discharge, photoelectrochemical (PEC) online sensors were developed, with advantages such as low energy consumption, inherent miniaturization, simple instrumentation, and fast response. However, there is no publicly available systematic review of the recent advances in PEC ion sensors available in the literature since January 2017. Thus, this review covers the various strategies that have been used to enhance the sensitivity, selectivity, and limit of detection for PEC ion sensors. The photoelectrochemically active materials, conductive substrates, electronic transfer, and performance of various PEC sensors are discussed in detail and divided into sections based on the measurement principle and detected ion species. We conclude this review by highlighting the challenges and potential future avenues of research associated with the development of novel high-performance PEC sensors.  相似文献   

11.
Prime concerns with modern developments are attributed to high level undetected but important biological substances or even toxicants cycled often among individual and populations; which in turn agonizes environmental monitoring, trace-gas detection, water treatment facilities, in vivo detection in biological fluids and other accomplishments. For the detection of such analytes, several analytical devices combined with biological component have been designed with a physiochemical detector component. Here, we essentially focus on drug-based potentiometric membrane sensors known as ion selective electrodes (ISEs). The functionality of ion-selective membrane is quite intricate, challenging, and our understanding is yet to be thrived with more interventions. ISEs have applied explications to enormous variety of analytical inquires as well as informative tools for probing host-guest chemistry. However, expansion of ISEs based applications is aimed to improve the system performance, acquiring enhanced understanding of their response mechanism, and finding new chemical or physical configurations mainly for human welfare. The major strength of ISEs is the precised analytical information, assured by using the ion-selective membrane electrodes used successfully for both in vitro and in vivo assays of pharmaceutical products as well as in clinical analyses. In this review, we attempt to provide a brief prologue to the applicability and advantages of potentiometric sensors in the analysis of pharmaceutically active compounds emphasizing their employment at molecular level for in situ selection of biologically important analytes.  相似文献   

12.
2, 4, 6-Trinitrotoluene (TNT) is a frequently used explosive compound, and it easily gathers in soil and water during transportation, use, and storage. Except for the security issue, it also has high toxicity and mutagenic effect on the environment and all life forms. Thus, it is critical to develop high-efficiency sensing methods for the detection of TNT at trace levels with high sensitivity and selectivity. This brief review highlights the research progress of using electrochemical sensors to analyze TNT molecules in recent years. Specifically, this minireview mainly focuses on the recently developed nanostructured electrocatalysts and electrochemical methods combined with other techniques for electrochemical detection of TNT.  相似文献   

13.
《中国化学快报》2023,34(11):108226
Flexible electronics technology is considered as a revolutionary technology to unlock the bottleneck of traditional rigid electronics that prevalent for decades, thereby fueling the next-generation electronics. In the past few decades, the research on flexible electronic devices based on organic materials has witnessed rapid development and substantial achievements, and inorganic semiconductors are also now beginning to shine in the field of flexible electronics. As validated by the latest research, some of the inorganic semiconductors, particularly those at low dimension, unexpectedly exhibited excellent mechanical flexibility on top of superior electrical properties. Herein, we bring together a comprehensive analysis on the recently burgeoning low-dimension inorganic semiconductor materials in flexible electronics, including one-dimensional (1D) inorganic semiconductor nanowires (NWs) and two-dimensional (2D) transition metal dichalcogenides (TMDs). The fundamental electrical properties, optical properties, mechanical properties and strain engineering of materials, and their performance in flexible device applications are discussed in detail. We also propose current challenges and predict future development directions including material synthesis and device fabrication and integration.  相似文献   

14.
Timerbaev AR 《Electrophoresis》2002,23(22-23):3884-3906
Capillary electrophoresis (CE) continues its invasion into the domain of inorganic analysis. This review summarizes the progress and significant developments of CE of inorganic ions over the first two years of the new century. As manifested by the substantial number of published articles, this field is still witnessing a growing activity of many separation scientists. To provide an in-depth treatment of fundamental and methodological aspects of inorganic ion analysis by CE, an extensive fraction of the relevant literature is covered whereas only most innovative application reports are briefly considered. Most of the recent advancements have focused on CE system modernization designed to improve a limited detection sensitivity, which still remains a major obstacle to overcome in order to ensure the method's wider practical acceptance. Attention is also given to how and in which directions the future research could be performed to implement CE in routine inorganic analysis.  相似文献   

15.
Due to the critical role of glucose level in the diagnosis and treatment of diabetes, as well as the increasing number of diabetics, there is an overwhelming demand for developing glucose sensors. It is well acknowledged that these sensors, especially those based on glucose oxidase, have played an important role in blood glucose detection. Inspired by the attractive properties, nanomaterials, especially nanostructured carbon and metal/metal oxides, have been extensively explored to develop enzymatic glucose sensors with high sensitivity, fast response time, and satisfied stability. In this review, a brief history of glucose biosensors is firstly presented. Furthermore, we discuss the currently available fabrication possesses in the field of enzymatic glucose biosensors based on nanomaterials, focusing on the carbon-based, metal-based, and metal oxides-based nanocomposites. What is more, we discuss the challenges and attempt to give an outlook on the possible further developments.  相似文献   

16.
General scheme of enantiomeric molecular imprinting. Reprinted from [21?] with permission from Elsevier.
  相似文献   

17.
The electrocatalytic properties of boron-doped diamond (BDD) electrodes have been considered for a variety of sensing applications. The unusual electrochemical properties of BDD include a large potential window, a small background current, and better resistance to fouling than other carbon-based electrodes. The use of BDD for remediation and environmental sensing applications has recently attracted the interest of the sensor research community. This review focuses on recent developments that involve the use of BDD as an environmentally friendly sensing material for environmental analysis. The electrochemical properties of boron-doped diamond that has undergone surface modification (e.g., with metals or enzymes) will be considered. Recent achievements involving the use of BDD electrodes for detecting pesticides, mycotoxins, peroxides, and phenolic compounds are considered.  相似文献   

18.
19.
Indoor photovoltaics have attracted increasing attentions owing to their great potential in supplying energy for low power devices under indoor light in our daily life.The third generation thin-film solar cells,including dye-sensitized solar cells,perovskite solar cells and organic solar cells,have made rapid progress from the aspect of materials design to photovoltaic performance.This review provides an overview on the recent advances in the development of indoor photovoltaic technologies based on the third generation solar cells.The design principles of advanced thin-film indoor photovoltaics were also summarized according to the characteristics of indoor light and the advantages of the third generation solar cells.Finally,after summarizing the current research progress,the perspective on this topic is provided.  相似文献   

20.
Efficient metal-based chiroptical switches have been designed that are capable of achieving multiple stable and reversible states. Studies in this field have yielded a variety of complex molecular devices whose conformations are controllable by many triggering mechanisms including pressure, solvent, counter ion, redox state, and photoinduction. Many of the systems are monitored with precision using circular dichroism spectroscopy. This review aims to provide a brief background of the development of these systems and a comprehensive overview of recently developed metal-based chiroptical switches. Potential applications in electronics and sensor technologies are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号