共查询到20条相似文献,搜索用时 15 毫秒
1.
The iron(II) complex LFeCl 2Li(THF) 2 (L = beta-diketiminate), 1, has been studied with variable-temperature, variable-field Mossbauer spectroscopy and parallel mode electron paramagnetic resonance (EPR) spectroscopy in both solution and the solid state. In zero applied field the 4.2 K Mossbauer spectrum exhibits an isomer shift delta = 0.90 mm/s and quadrupole splitting Delta E Q = 2.4 mm/s, values that are typical for the high-spin ( S = 2) state anticipated for the iron in 1. Spectra recorded in applied magnetic fields yield an anisotropic magnetic hyperfine tensor with A x = +2.3 (+ 1.0) T, A y = A z = -21.5 T ( solution) and a nearly axial zero-field splitting of the spin quintet with D = D x approximately -14 cm (-1) and rhombicity E/ D approximately 0.1. The small, positive value for A x results from the presence of residual orbital angular momentum along x. The EPR analysis gives g x approximately 2.4 (and g y approximately g z approximately 2.0) and reveals a split " M S = +/- 2" ground doublet with a gap distributed around Delta = 0.42 cm (-1). The Mossbauer spectra of 1 show unusual features that arise from the presence of orientation-dependent relaxation and a distribution in the magnetic hyperfine field along x. The origin of the distribution has been analyzed using crystal field theory. The analysis indicates that the distribution in the magnetic hyperfine field originates from a narrow distribution, sigma phi approximately 0.5 degrees , in torsion angle phi between the FeN 2 and FeCl 2 planes, arising from minute inhomogeneities in the molecular environments. 相似文献
2.
3.
Bochevarov AD Friesner RA Lippard SJ 《Journal of chemical theory and computation》2010,6(12):3735-3749
We report the performance of eight density functionals (B3LYP, BPW91, OLYP, O3LYP, M06, M06-2X, PBE, and SVWN5) in two Gaussian basis sets (Wachters and Partridge-1 on iron atoms; cc-pVDZ on the rest of atoms) for the prediction of the isomer shift (IS) and the quadrupole splitting (QS) parameters of M?ssbauer spectroscopy. Two sources of geometry (density functional theory-optimized and X-ray) are used. Our data set consists of 31 iron-containing compounds (35 signals), the M?ssbauer spectra of which were determined at liquid helium temperature and where the X-ray geometries are known. Our results indicate that the larger and uncontracted Partridge-1 basis set produces slightly more accurate linear correlations of electronic density used for the prediction of IS and noticeably more accurate results for the QS parameter. We confirm and discuss the earlier observation of Noodleman and co-workers that different oxidation states of iron produce different IS calibration lines. The B3LYP and O3LYP functionals have the lowest errors for either IS or QS. BPW91, OLYP, PBE, and M06 have a mixed success whereas SVWN5 and M06-2X demonstrate the worst performance. Finally, our calibrations and conclusions regarding the best functional to compute the M?ssbauer characteristics are applied to candidate structures for the peroxo and Q intermediates of the enzyme methane monooxygenase hydroxylase (MMOH), and compared to experimental data in the literature. 相似文献
4.
5.
Andres H Bominaar EL Smith JM Eckert NA Holland PL Münck E 《Journal of the American Chemical Society》2002,124(12):3012-3025
M?ssbauer spectra of [LFe(II)X](0) (L = beta-diketiminate; X = Cl(-), CH(3)(-), NHTol(-), NHtBu(-)), 1.X, were recorded between 4.2 and 200 K in applied magnetic fields up to 8.0 T. A spin Hamiltonian analysis of these data revealed a spin S = 2 system with uniaxial magnetization properties, arising from a quasi-degenerate M(S) = +/-2 doublet that is separated from the next magnetic sublevels by very large zero-field splittings (3/D/ > 150 cm(-1)). The ground levels give rise to positive magnetic hyperfine fields of unprecedented magnitudes, B(int) = +82, +78, +72, and +62 T for 1.CH(3), 1.NHTol, 1.NHtBu, and 1.Cl, respectively. Parallel-mode EPR measurements at X-band gave effective g values that are considerably larger than the spin-only value 8, namely g(eff) = 10.9 (1.Cl) and 11.4 (1.CH(3)), suggesting the presence of unquenched orbital angular momenta. A qualitative crystal field analysis of g(eff) shows that these momenta originate from spin-orbit coupling between energetically closely spaced yz and z(2) 3d-orbital states at iron and that the spin of the M(S) = +/-2 doublet is quantized along x, where x is along the Fe-X vector and z is normal to the molecular plane. A quantitative analysis of g(eff) provides the magnitude of the crystal field splitting of the lowest two orbitals, /epsilon(yz) - epsilon(2)(z)/ = 452 (1.Cl) and 135 cm(-1) (1.CH(3)). A determination of the sign of the crystal field splitting was attempted by analyzing the electric field gradient (EFG) at the (57)Fe nuclei, taking into account explicitly the influence of spin-orbit coupling on the valence term and ligand contributions. This analysis, however, led to ambiguous results for the sign of epsilon(yz) - epsilon(2)(z). The ambiguity was resolved by analyzing the splitting Delta of the M(S) = +/-2 doublet; Delta = 0.3 cm(-1) for 1.Cl and Delta = 0.03 cm(-)(1) for 1.CH(3). This approach showed that z(2) is the ground state in both complexes and that epsilon(yz) - epsilon(2)(z) approximately 3500 cm(-1) for 1.Cl and 6000 cm(-1) for 1.CH(3). The crystal field states and energies were compared with the results obtained from time-dependent density functional theory (TD-DFT). The isomer shifts and electric field gradients in 1.X exhibit a remarkably strong dependence on ligand X. The ligand contributions to the EFG, denoted W, were expressed by assigning ligand-specific parameters: W(X) to ligands X and W(N) to the diketiminate nitrogens. The additivity and transferability hypotheses underlying this model were confirmed by DFT calculations. The analysis of the EFG data for 1.X yields the ordering W(N(diketiminate)) < W(Cl) < W(N'HR), W(CH(3)) and indicates that the diketiminate nitrogens perturb the iron wave function to a considerably lesser extent than the monodentate nitrogen donors do. Finally, our study of these synthetic model complexes suggests an explanation for the unusual values for the electric hyperfine parameters of the iron sites in the Fe-Mo cofactor of nitrogenase in the M(N) state. 相似文献
6.
Tarpan MA Pauwels E Vrielinck H Waroquier M Callens F 《The journal of physical chemistry. A》2010,114(47):12417-12426
Stable free radical formation in fructose single crystals X-irradiated at room temperature was investigated using Q-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), and ENDOR induced EPR (EIE) techniques. ENDOR angular variations in the three main crystallographic planes allowed an unambiguous determination of 12 proton HFC tensors. From the EIE studies, these hyperfine interactions were assigned to six different radical species, labeled F1-F6. Two of the radicals (F1 and F2) were studied previously by Vanhaelewyn et al. [Vanhaelewyn, G. C. A. M.; Pauwels, E.; Callens, F. J.; Waroquier, M.; Sagstuen, E.; Matthys, P. J. Phys. Chem. A 2006, 110, 2147.] and Tarpan et al. [Tarpan, M. A.; Vrielinck, H.; De Cooman, H.; Callens, F. J. J. Phys. Chem. A 2009, 113, 7994.]. The other four radicals are reported here for the first time and periodic density functional theory (DFT) calculations were used to aid their structural identification. For the radical F3 a C3 carbon centered radical with a carbonyl group at the C4 position is proposed. The close similarity in HFC tensors suggests that F4 and F5 originate from the same type of radical stabilized in two slightly different conformations. For these radicals a C2 carbon centered radical model with a carbonyl group situated at the C3 position is proposed. A rather exotic C2 centered radical model is proposed for F6. 相似文献
7.
Stabilization of 57Fe compounds in matrices of solid solutions of platinum(IV) superoxo- and hydroxo complexes was probed by Mössbauer spectroscopy. The ratio FeIII/FeIV in these matrices is 20/1. 相似文献
8.
N. S. Kopelev Yu. D. Perfiliev Yu. M. Kiselev 《Journal of Radioanalytical and Nuclear Chemistry》1992,162(2):239-251
Sodium ferrates(IV) and (VI) were synthesized by the reaction between Fe2O3 and Na2O2 in a dry oxygen stream. The Mössbauer data for the obtained samples are presented (for Na2FeO3–=0.18(2) mm/s; for Na4FeO5–=–0.54(2) mm/s). It was shown that pure K2FeO4 and Cs2FeO4 can be obtained by heating Fe2O3 with apropriate alkali metal peroxides. 相似文献
9.
Zhang Y Mao J Godbout N Oldfield E 《Journal of the American Chemical Society》2002,124(46):13921-13930
We report the results of a series of density functional theory (DFT) calculations aimed at predicting the (57)Fe M?ssbauer electric field gradient (EFG) tensors (quadrupole splittings and asymmetry parameters) and their orientations in S = 0, (1)/(2), 1, (3)/(2), 2, and (5)/(2) metalloproteins and/or model systems. Excellent results were found by using a Wachter's all electron basis set for iron, 6-311G for other heavy atoms, and 6-31G for hydrogen atoms, BPW91 and B3LYP exchange-correlation functionals, and spin-unrestricted methods for the paramagnetic systems. For the theory versus experiment correlation, we found R(2) = 0.975, slope = 0.99, intercept = -0.08 mm sec(-)(1), rmsd = 0.30 mm sec(-)(1) (N = 23 points) covering a DeltaE(Q) range of 5.63 mm s(-)(1) when using the BPW91 functional and R(2) = 0.978, slope = 1.12, intercept = -0.26 mm sec(-)(1), rmsd = 0.31 mm sec(-)(1) when using the B3LYP functional. DeltaE(Q) values in the following systems were successfully predicted: (1) ferric low-spin (S = (1)/(2)) systems, including one iron porphyrin with the usual (d(xy))(2)(d(xz)d(yz))(3) electronic configuration and two iron porphyrins with the more unusual (d(xz)d(yz))(4)(d(xy))(1) electronic configuration; (2) ferrous NO-heme model compounds (S = (1)/(2)); (3) ferrous intermediate spin (S = 1) tetraphenylporphinato iron(II); (4) a ferric intermediate spin (S = (3)/(2)) iron porphyrin; (5) ferrous high-spin (S = 2) deoxymyoglobin and deoxyhemoglobin; and (6) ferric high spin (S = (5)/(2)) metmyoglobin plus two five-coordinate and one six-coordinate iron porphyrins. In addition, seven diamagnetic (S = 0, d(6) and d(8)) systems studied previously were reinvestigated using the same functionals and basis set scheme as used for the paramagnetic systems. All computed asymmetry parameters were found to be in good agreement with the available experimental data as were the electric field gradient tensor orientations. In addition, we investigated the electronic structures of several systems, including the (d(xy))(2)(d(xz),d(yz))(3) and (d(xz),d(yz))(4)(d(xy))(1) [Fe(III)/porphyrinate](+) cations as well as the NO adduct of Fe(II)(octaethylporphinate), where interesting information on the spin density distributions can be readily obtained from the computed wave functions. 相似文献
10.
Tomá Zemik 《Fresenius' Journal of Analytical Chemistry》1994,349(1-3):26-31
Mössbauer spectroscopy is reviewed as a method of analysis of hyperfine interactions in the solid state. It is sensitive both to the atomic scale and to phase structures. It utilizes the interactions between the hyperfine fields and nuclei in solids measured by a nuclear technique. The importance of various Mössbauer isotopes is discussed, the 57Fe being still the most important. Principles of the qualitative determination of the structure sites and/or phase attachment are explained on the basis of the measurement of hyperfine structure parameters (i.e. the isomer (chemical) shift, the quadrupole and magnetic splittings). The role of the hyperfine field distribution determination is stressed, especially the magnetic hyperfine induction distribution in magnetically ordered solids. Conditions are explained for the feasibility of quantitative estimations of site occupancy and phase abundance. With respect to the predominant role of the magnetic hyperfine structure predestinating Mössbauer spectroscopy to be considered simultaneously as a special magnetic measuring technique, examples are chosen from the field of new magnetic materials. For the substituted hexagonal (M-type) ferrites (aimed, e.g., for the perpendicular magnetic recording), Mössbauer determination of the cation site occupancy is discussed. Structural changes in ion implanted Fe-B-based amorphous alloys detected by the hyperfine field distribution are shown. For the magnetically extremely soft FeCuNbSiB alloys, produced by the controlled crystallization of an amorphous ribbon, the estimation of their rather complicated phase composition by the Mössbauer phase analysis is demonstrated.Common enterprise of the Department of Low Temperature Physics with the Institute of Physics and Institute of Inorganic Chemistry, Czech Academy of Sciences, Prague 相似文献
11.
Li F Meier KK Cranswick MA Chakrabarti M Van Heuvelen KM Münck E Que L 《Journal of the American Chemical Society》2011,133(19):7256-7259
We have generated a high-spin Fe(III)-OOH complex supported by tetramethylcyclam via protonation of its conjugate base and characterized it in detail using various spectroscopic methods. This Fe(III)-OOH species can be converted quantitatively to an Fe(IV)═O complex via O-O bond cleavage; this is the first example of such a conversion. This conversion is promoted by two factors: the strong Fe(III)-OOH bond, which inhibits Fe-O bond lysis, and the addition of protons, which facilitates O-O bond cleavage. This example provides a synthetic precedent for how O-O bond cleavage of high-spin Fe(III)-peroxo intermediates of non-heme iron enzymes may be promoted. 相似文献
12.
13.
T. Kitazawa Mi. Takahashi Ma. Takahashi M. Enomoto A. Miyazaki T. Enoki M. Takeda 《Journal of Radioanalytical and Nuclear Chemistry》1999,239(2):285-290
The coordination polymer Fe(3-chloropyridine)2Ni(CN)4 (2) has been prepared by a method similar to that for Fe(pyridine)2Ni(CN)4 (1). The complex (2) has been characterized by57Fe Mössbauer spectroscopy and a SQUID technique.57Fe Mössbauer and magnetic susceptibility data show that complex (2) exhibits spin-crossover behavior. The spin transition of (2) occurs between 120 and 80 K with very small hysteresis or without hysteresis. The temperature range of the spin transition in (2) is lower than that in (1). A residual high spin iron(II) fraction is observed at low temperatures in (2), being different from (1). SQUID data also show that samples treated differently yield different spin transition curves. 相似文献
14.
Choi Hyunkyung Seo Jae Yeon Kim Chul Sung 《Journal of Radioanalytical and Nuclear Chemistry》2021,330(2):461-467
Journal of Radioanalytical and Nuclear Chemistry - The 57Fe doped LiMnPO4 cathode with potential applications in Li-ion batteries was prepared by solid-state reaction. The magnetic susceptibility... 相似文献
15.
Different analytical and structural methods (Electron Probe Micro-Analysis, Single Crystal X-ray diffraction, X-ray Photoelectron Spectroscopy, M?ssbauer spectroscopy) were combined to fully characterise the crystal chemistry of natural Ti-bearing garnets from Colli Albani (Lazio, Italy). The study of the relevant complex crystal chemistry ( large number of cation substitutions affecting the three independent X(8-fold), Y(6-fold) and Z(4-fold) crystallographic sites and Fe and Ti transition elements exhibiting several oxidation states and coordination environments) benefited from the multi-technique approach. Electron probe microanalysis provided elemental composition of the analysed samples, which have low Ti-content (TiO2 in the range 1.99 - 3.48 wt %) and slightly different Fe/Al ratios. For all samples, two doublets were fitted to room temperature M?ssbauer spectra and assigned to Fe3+(Y) (approximately 95%) and Fe2+(X) (approximately 5%). Up to three doublets (Ti3+(Y), Ti4+(Y), Ti4+(Z)) were fitted to XPS spectra and yielded direct evaluation of Ti site population. XPS technique confirmed its potential for the study of speciation of Ti in minerals. 相似文献
16.
Sipos P Zeller D Kuzmann E Vértes A Homonnay Z Walczak M Canton SE 《Dalton transactions (Cambridge, England : 2003)》2008,(41):5603-5611
To establish the structure of ferric ions in strongly alkaline (pH > 13) environments, aqueous NaOH solutions supersaturated with respect to Fe(III) and the solid ferric-hydroxo complex salts precipitating from them have been characterized with a variety of experimental techniques. From UV measurements, in solutions of pH > 13, only one kind of Fe(III)-hydroxo complex species was found to be present. The micro crystals obtained from such solutions were proven to be a new, so far unidentified solid phase. M?ssbauer spectra of the quick-frozen solution and that of the complex salt indicated a highly symmetrical ferric environment in both systems From the EXAFS and XANES spectra, the environment of the ferric ion in these solutions (both native and quick-frozen) and in the complex salt was found to be different. In the complex salt, the bond lengths are consistent with an octahedral coordination around the ferric centres. In solution, the coordination geometry of Fe(III) is most probably tetrahedral. Our results demonstrate that in strongly alkaline aqueous solutions, ferric ions behave very similarly to other structurally related tervalent ions, like Al(III) or Ga(III). 相似文献
17.
Influence of molecular geometry, type of exchange-correlation functional, and contraction scheme of basis set applied at the iron nuclei have been tested in the calculation of 57Fe M?ssbauer isomer shifts and quadrupole splittings for a wide range of ligand types, as well as oxidation and spin states, in inorganic and organometallic systems. It has been found that uncontraction of the s-part of Wachter's full-electron basis set at the iron nuclei does not appreciably improve the calculated isomer shifts. The observed correlations for all tested sets of geometries are close to each other and predominantly depend on the employed exchange-correlation functional with B3LYP functional being slightly better as compared to BPW91. Both hybrid (B3LYP) and pure (BPW91) exchange-correlation functionals are suitable for the calculation of isomer shifts in organometallic compounds. Surprisingly, it has been found that the hybrid B3LYP exchange-correlation functional completely fails in accurate prediction of quadrupole splittings in ferrocenes, while performance of the pure BPW91 functional for the same systems was excellent. This observation has been explained on the basis of relationship between the amount of Hartree-Fock exchange involved in the applied exchange-correlation functional and the calculated HOMO-LUMO energy gap in ferrocenes. On the basis of this explanation, use of only pure exchange-correlation functionals has been suggested for accurate prediction of M?ssbauer spectra parameters in ferrocenes. 相似文献
18.
Jun Xu Junmin Wan Yanying Zhao Miaoqiang Lv Xuming Zheng Guodong Wang Huigang Wang 《Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy》2010,75(5):1381-1387
Resonance Raman spectra of free-base tetraphenylporphine (TPP) were obtained with 397.9, 416, and 435.7 nm excitation wavelengths and density functional calculations were done to elucidate the electronic transitions and the resonance Raman spectra (RRs) of TPP. The RRs indicate that the Franck–Condon region photodynamics for S0 → S4 electronic state is predominantly along the Cm–ph stretch while that for S0 → S3 electronic state is predominantly along the porphin ring CβCβ stretch. Non-totally symmetric vibrational modes were regularly presented in resonance Raman spectra: the shorter the excitation wavelengths were, the stronger intensity the modes had, which can be interpreted in terms of electric dipole transition moments caused by Franck–Condon and Herzberg–Teller coupling.Four non-total symmetry vibrational mode υ52, υ64, υ97 and υ130 in A2 irreducible representative of TPP were observed in 397.9, 416 and 435.7 nm resonance Raman spectrum. With the shorter wavelength laser excitations at 416 or 397.9 nm, the A2 vibrational modes show more enhanced Raman intensity by comparison with those in the TPP spectrum excited at 435.7 nm. 相似文献
19.
X-ray diffraction and Mössbauer spectroscopy were employed to investigate structural stability of Fe2TiO4 under high pressure. Measurements were performed up to about 24 GPa at room temperature using diamond anvil cell. Experimental results demonstrate that Fe2TiO4 undergoes a series of phase transitions from cubic (Fd3?m) to tetragonal (I41/amd) at 8.7 GPa, and then to orthorhombic structure (Cmcm) at 16.0 GPa. The high-pressure phase (Cmcm) of Fe2TiO4 is kept on decompression to ambient pressure. In all polymorphs of Fe2TiO4, iron cations present a high-spin ferrous property without electric charge exchange with titanium cations at high pressure supported by Mössbauer evidences. 相似文献
20.
《Journal of Inorganic and Nuclear Chemistry》1981,43(4):653-658
Several Sn(IV) and organotin(IV) compounds of the type SnL2X2(X = Cl and HL = 5-acetyl-, benzol-, or phenylazo-, 8-quinolinol), SnX4 · 2HL′(X = Cl or Br and HL′=8-quinolinol-N-Oxide), R2SnL2(R = CH3, C2H5, C4H9, C8H17 or C6H5) and R3SnL(R = C6H5) have been synthesized and characterized. The 119mSn Mössbauer spectra of these compounds have been recorded at 77°K and probable structures from the Mössbauer parameters are inferred. R2SnL2 chelates (Q.S = ca. 2.0 mm/sec.) are considered to have the two R-groups occupying cis-positions in the octahedral structure. The Mössbauer spectra of the compounds, SnX4·2HL′ have been resolved graphically and the quadrupole splitting values (ca. 0.75 mm/sec.) strongly suggest trans-configuration for the Sn(IV) tetrahalide adducts. 相似文献