首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Drought poses a serious threat to oilseed crops by lowering yield and crop failures under prolonged spells. A multi-year field investigation was conducted to enhance the drought tolerance in four genotypes of Camelina and canola by selenium (Se) application. The principal aim of the research was to optimize the crop yield by eliciting the physio-biochemical attributes by alleviating the adverse effects of drought stress. Both crops were cultivated under control (normal irrigation) and drought stress (skipping irrigation at stages i.e., vegetative and reproductive) conditions. Four different treatments of Se viz., seed priming with Se (75 μM), foliar application of Se (7.06 μM), foliar application of Se + Seed priming with Se (7.06 μM and 75 μM, respectively) and control (without Se), were implemented at the vegetative and reproductive stages of both crops. Sodium selenite (Na2SeO3), an inorganic compound was used as Se sources for both seed priming and foliar application. Data regarding physiochemical, antioxidants, and yield components were recorded as response variables at crop maturity. Results indicated that WP, OP, TP, proline, TSS, TFAA, TPr, TS, total chlorophyll contents, osmoprotectant (GB, anthocyanin, TPC, and flavonoids), antioxidants (APX, SOD, POD, and CAT), and yield components (number of branches per plant, thousand seed weight, seed, and biological yields were significantly improved by foliar Se + priming Se in both crops under drought stress. Moreover, this treatment was also helpful in boosting yield attributes under irrigated (non-stress) conditions. Camelina genotypes responded better to Se application as seed priming and foliar spray than canola for both years. It has concluded that Se application (either foliar or priming) can potentially alleviate adverse effects of drought stress in camelina and canola by eliciting various physio-biochemicals attributes under drought stress. Furthermore, Se application was also helpful for crop health under irrigated condition.  相似文献   

2.
Four selected Amaranthus tricolor cultivars were grown under four irrigation regimes (25, 50, 80, and 100% field capacity) to evaluate the mechanisms of growth and physiological and biochemical responses against drought stress in randomized complete block design with three replications. Drought stress led to decrease in total biomass, specific leaf area, relative water content (RWC), photosynthetic pigments (chlorophyll a, chlorophyll b, chlorophyll ab), and soluble protein and increase in MDA, H2O2, EL, proline, total carotenoid, ascorbic acid, polyphenols, flavonoids, and antioxidant activity. However, responses of these parameters were differential in respect to cultivars and the degree of drought stresses. No significant difference was observed in control and LDS for most of the traits. The cultivars VA14 and VA16 were identified as more tolerant to drought and could be used for further evaluations in future breeding programs and new cultivar release programs. Positively significant correlations among MDA, H2O2, compatible solutes, and non-enzymatic antioxidant (proline, TPC, TFC, and TAC) suggested that compatible solutes and non-enzymatic antioxidant played vital role in detoxifying of ROS in A. tricolor cultivar. The increased content of ascorbic acid indicated the crucial role of the ASC–GSH cycle for scavenging ROS in A. tricolor.  相似文献   

3.
Today, in the presence of global warming, understanding how plants respond to drought stress is essential to meet the challenge of developing new cultivars and new irrigation strategies, consistent with the maintenance of crop productivity. In this context, the study of the relation between plants and water is of central interest for modeling their responses to biotic and abiotic constraints. Paradoxically, there are very few direct and noninvasive methods to quantify and measure the level and the flow of water in plants. The present work aims to develop a noninvasive methodology for living plant based on nuclear magnetic resonance (NMR) at low magnetic field and imaging (MRI) to tackle the issue of water quantity in plants. For this purpose, a portable NMR device measuring the signal level at 8 mT was built. This instrument addresses specific challenges such as miniaturization, accessibility, and overheating in order to maintain the plant intact of time over long period. Time dependence of the water content in sorghum plants is reported under abiotic stress as well as the fraction of transpirable soil water and the photosynthesis activity through the leaves. At high magnetic field (9.4 T), T2 maps were acquired on the same sorghum plants at two time points. The combination of these approaches allows us to identify ecophysiological biomarkers of drought stress. One particular interesting result concerns the spatial distribution of water in two anatomically contrasted sorghum genotypes.  相似文献   

4.
Drought is the major abiotic stress factor that causes extensive losses to agriculture production worldwide. The objective of this study was to evaluate the dynamics of photosynthesis and water-use efficiency parameters in 15 cowpea genotypes under well-watered and drought condition. Photosynthesis (A) and chlorophyll fluorescence (Fv'/Fm') declined linearly with decreasing soil water content whereas intrinsic water-use efficiency (WUE) increased under drought stress, suggesting stomatal regulation was a major limitation to photosynthesis. However, under increasing drought conditions, increase in ratio of intercellular CO(2) to ambient CO(2) concentrations along with reduced WUE showed the role of non-stomatal limitation of photosynthesis. The resistant nature of Fv'/Fm' and electron transport rate under drought appeared to be important mechanisms for photoinhibition protection under drought stress. Oxidative stress was apparent due to drought-induced reduction in total chlorophyll and carotenoid which was accompanied with increased leaf wax contents. The accumulation of proline appeared to be in response of drought injury rather than a drought tolerance mechanism. A clear separation based on the genotypes site of origin among the genotypes for drought tolerance could not be established when analyzed using principal component analysis. The identified genotypes and physiological traits from this study may be useful for genetic engineering and breeding programs integrating drought adaptation in cowpea.  相似文献   

5.
An investigation was carried out to find out the extent of changes occurred in groundnut (Arachis hypogaea L.) cultivars in response to paclobutrazol (PBZ) treatment under water deficit stress. Two groundnut cultivars namely ICG 221 and ICG 476 were used for the study. Individual treatment with PBZ and drought stress showed an increase in ascorbic acid, -tocopherol and reduced glutathione, superoxide dismutase (SOD), ascorbate peroxidase (APX) and catalase (CAT) activities. PBZ with drought stressed plants maintained higher levels of antioxidant and scavenging enzymes. Significant differences were observed between cultivars and treatments. These results suggests that the adverse effects of water stress can be minimized by the application of PBZ by increasing the antioxidant levels and activities of scavenging enzymes such as SOD, APX and CAT. The Cv. ICG 221 appears to be more tolerant to water stress than the ICG 476.  相似文献   

6.
Experiments were conducted to examine the individual and combined effect of two different electromagnetic energies, i.e., gamma ray viz 0.1, 0.5 and 1 kGy and static magnetic field (50 mT for 1 h) and their combination (0.5 kGy + 50 mT) on the shelf life of tomato and evaluates the biochemical attributes that influence the fruit ripening and fruit quality. Magnetic field application either alone or in combination with gamma irradiation was not effective in delaying the ripening process. Gamma ray exposed fruits at 0.5 and 1 kGy showed an extended shelf life due to delayed fruit ripening and reduced lycopene synthesis and ethylene production. Efficient ROS scavenging ability and consequent reduction in oxidative damage in the irradiated treatment may cause favorable biochemical changes to facilitate delayed ripening of the tomato fruits.  相似文献   

7.
Acute microhemodynamic effects of static and alternating magnetic fields at a threshold level were investigated on modulating the muscle capillary mirocirculation in pentobarbital-anesthetized mice. The skin in a tibialis anterior was circularly removed with 1.5 mm diameter for intravital-microscopic recording of the capillary blood velocity in the tibialis anterior muscle. Fluorescein isothiocyanate (FITC)-labeled dextran (MW 150 kDa) was used for an in vivo fluorescent plasma marker of the muscle capillaries. Following a bolus injection of FITC-dextran solution into the caudal vein, the peak blood velocity in the muscle capillaries was measured prior to, during, and following exposure to static magnetic fields (SMF) or 50-Hz electromagnetic fields (EMF) using a fluorescence epi-illumination system. The whole body of experimental animals, placed on the observing stage of a fluorescence microscope, was exposed to SMF (0.3, 1 and 10 mT) or 50-Hz EMF (0.3 and 1 mT) for 10 min using a specially devised electromagnet. For sham exposure, the electromagnet was not energized. During exposure and post-exposure to SMF of 10 mT, the peak blood velocity significantly increased as compared to sham exposure. After the withdrawal of SMF and 50-Hz EMF of 1 mT, significant similar effects on the blood velocity were present or enhanced. These findings suggest that field intensity of 1 mT might be considered as a threshold level for enhancing muscle microcirculation under pentobarbital-induced hypnosis.  相似文献   

8.
Using Raman spectroscopy, the authors have investigated the aggregation/disgregation of magnetic nanoparticles in dense ionic ferrofluids (IFF) into clusters due to the action of an inhomogeneous external magnetic field. Evidence for changes in particle density and/or effective cluster size were obtained from the variation of the Raman intensity in a time window from 10 s to 10 min for magnetic fields up to 350 mT and at a temperature of 28 degrees C. Clustering sets in already at very low fields (>15 mT) and the IFF samples exhibit a clear hysteresis in the Raman spectra after releasing the magnetic field, which lasts for many hours at room temperature. The authors determined the characteristic times of the two competing processes, that of field-induced cluster formation and, at room temperature, that of thermal-activated dissociation, to range from 100 to 150 s.  相似文献   

9.
Magnetic seed enhancement has been practicing as a promising tool to improve germination and seedling growth of low vigor seeds stored under suboptimal conditions, but there is still ambiguity regarding the prospects for magnetism in oilseeds. Present study elucidates the potential of magnetic seed stimulation to improve sunflower germination, growth and yield. Germination and emergence tests were performed to optimize the strength of the magnetic field to sunflower seed enhancement. The seeds were directly exposed to magnetic field strengths of 50, 100 and 150 millitesla (mT) for 5, 10 and 15 min (min) and then standard germination tests were performed. Secondly, the emergence potential of untreated seeds was compared with seed exposed to hydropriming, priming with 3% moringa leaf extract (MLE), priming with magnetically treated water (MTW) for 10 min and priming with 3% MLE solution prepared in magnetically treated water (MTW + MLE). Germination, emergence, seedling growth and seed biochemical properties were used to select the best treatment for field evaluation. The results of the study revealed that magnetic seed treatment with 100 mT for 10 min and seed priming with 3% MLE solution in magnetically treated water (MTW + MLE) significantly improved emergence, crop growth rate and sunflower yield.  相似文献   

10.
Trypsin-, heat- and Triton X-100-induced denaturation of CP43, the core antenna complex of photosystem II purified from spinach, has been investigated using absorption, fluorescence and circular dichroism spectroscopy. Triton X-100 was found to bring about considerable dissolution of pigments from the protein to the monomeric state in solution and destruction of the interactions among the chlorophyll, carotene and protein. Heat induced significant unfolding of the protein secondary structure and loss of excitonic interactions of the pigments, but no apparent dissolution of the pigments from CP43. Trypsin caused structural changes in the extrinsic part of the protein but no change of the native state of the pigments. Trypsin, heat and Triton X-100 treatments increased the light sensitivity of chlorophyll in CP43 to different extents. The results suggest that the protein and beta-carotene can protect the chlorophyll from light-induced destruction in CP43.  相似文献   

11.
Drought is the main abiotic stress that severely reduces wheat yield across the globe. To cope up this situation, use of organic amendments is the best option. Biochar is an organic soil amendment that is used to improve soil carbon, organic contents, improve water holding capacity of soil, enhance soil fertility and maintain desired soil. Present study was carried out under semi-arid climatic conditions to mitigate the adverse effects of drought at critical wheat growth stages i.e., tillering (DTS), flowering (DFS) and grain filling stage (DGFS) by using three biochar treatments viz. B0 = Control, B1 = 27.88 g kg−1 and B2 = 37.18 g kg−1. Results revealed that drought stress negatively affected the growth and yield attributes of wheat at all critical growth stages, while, grain filling stage was found the most sensitive stage resulted severe yield reduction. However, biochar application significantly mitigated the detrimental effects of drought by improving number of fertile tillers (19.50%), spike length (6.52%), number of grains per spike (3.07%), thousand grain weight (6.42%), biological (9.43%) and economic yield (13.92%) as compared to control treatment. Moreover, biochar significantly improved water use efficiency and physiological attributes of drought stressed wheat. Principal component analysis linked different scales of study and demonstrated the potential of physio-biochemical traits to explain the wheat yield variations under drought condition with response to biochar application. In crux, biochar application (37.18 g kg−1) can be used as an effective stratagem to achieve improved wheat grain yield through mitigating the adverse effects of drought stress.  相似文献   

12.
Combined enhanced UV‐B radiation and drought may induce different morphological and physiological alterations in plants than either abiotic stress alone. We evaluated morphology, biomass, and primary and secondary metabolism changes in seedlings of two common bean cultivars, IAC Imperador (drought‐resistant) and IAC Milênio. To test the hypothesis that cultivars responded differently to combined stresses in a controlled environment, seedlings of the examined been cultivars were exposed to UV‐B and/or drought treatments for three weeks. The cultivars behaved differently, especially to the drought treatment, suggesting that they use different mechanisms to cope with unfavorable environmental conditions. IAC Imperador showed a stronger protective response, modifying wax composition and primary metabolism, and improving its resistance to UV‐B radiation. For IAC Imperador, the accumulation of cuticular wax and alkane was higher under combined stress but production of primary alcohols was reduced, suggesting a possible fatty acyl switch. Root/shoot length and biomass ratios increased in both cultivars, particularly for the combined stress, indicating a common plant response. We show that these two bean cultivars responded more strongly to UV‐B and combined stress than drought alone as evident in changes to their chemistry and biology. This shows the importance of investigating plant morphological and physiological responses to combined stress.  相似文献   

13.
14.
The content of individual chlorophyll and carotenoid pigments is determined in three spinach varieties (Lorelei, Springfield, and Ballet) after processing. Raw spinach and spinach that is steam-blanched for 3, 9, or 15 min is stored frozen at -24 degrees C for 6 months. In addition, spinach is air-dried at 75 degrees C, packed in atmospheric air or nitrogen, and stored at ambient temperature for 6 months. Processing has a significant effect on the content of individual chlorophyll and carotenoid pigments; however, there are no differences between varieties in their content of total and individual pigments in raw, frozen spinach. Increasing blanching time resulted in decreased contents of chlorophyll a and b and increased contents of chlorophyll a' and b' and pheophytin a and b because of pheophytinization. Changes in the color because of pheophytinization are only detected after 15 min blanching. The carotenoid pigments are more stable than the chlorophyll pigments during blanching. (all-E)-Violaxanthin is significantly reduced, caused by degradation to other xanthophylls, such as neochrome, during blanching. There are no significant differences in the content of chlorophyll a and b of dried spinach and blanched, frozen spinach. Formation of chlorophyll a' and b', pheophytin a and b, and chlorophyll a-1 and b-1 is observed after drying. The content of pheophytin a and b is significantly lower in dried versus blanched frozen samples. In dried spinach that is stored in atmospheric air, the content of beta-carotene [599 mg/kg dry matter (DM)] is significantly lower compared with nitrogen (766 mg/kg DM), and the content of (all-E)-lutein is lower than in blanched frozen spinach. Neochrome is not detected in raw spinach but in steam-blanched and dried spinach. No differences are observed in the content of (all-E)-neoxanthin, (9'Z)-neoxanthin, (all-E)-violaxanthin, (all-E)-lutein epoxide, or neolutein A and B between spinach that is stored frozen after 3 min blanching and dried spinach.  相似文献   

15.
The effects of two triazole compounds, triadimefon and hexaconazole, on the growth and carbohydrate metabolism were studied in Solenostemon rotundifolius Poir., Morton plants under pot culture. Plants were treated with triadimefon at 15mg l(-1) and hexaconazole at 10mg l(-1) separately by soil drenching on 80, 110 and 140 days after planting (DAP). The plants were harvested randomly and growth parameters were studied on 90, 120 and 150 DAP for determining the effect of both the triazole on growth and chlorophyll pigments. These triazole compounds increased the chlorophyll pigments. However, both the treatments decreased the fresh and dry weights of shoot and leaf area. Both these triazole resulted in a marginal increase in starch content and decreased the sugar contents. The carbohydrate metabolizing enzymes alpha- and beta-amylase activities were reduced and invertase activity increased in S. rotundifolius under triadimefon and hexaconazole treatments.  相似文献   

16.
高效液相色谱法测定藻类中的类胡萝卜素和叶绿素   总被引:16,自引:0,他引:16  
袁建平  张义明  史贤明  龚贤弟  陈峰 《色谱》1997,15(2):133-135
提出了用高效液相色谱法测定藻类中类胡萝卜素和叶绿素的方法。采用丙国等有机溶剂提取藻类中的类胡萝卜素和叶绿素,然后在反相C18柱上进行分离。流动相选用二氯甲烷/乙腈/甲醇/水(22.5:9.5:67.5:0.5),流速为1.0mL/min。用光度检测器检测报长为450um。叶黄素、α-胡萝卜素、β-胡萝卜素、叶绿素a和叶绿素b的平均回收串分别为99.1%,98.5%,99.4%,100.6%和99.9%,相对标准偏差分别为2.4%,5.6%,6.0%,4.1%和4.0%。  相似文献   

17.
Abstract —Our recent research on photochemiluminescence (PCL) of pigments in solutions is reviewed. PCL was observed in the course of photooxidation by oxygen of chlorophyll a , bacteriochlorophyll, protochlorophyll, their analogs, synthetic dyes and aromatic hydrocarbons. The PCL of chlorophyll was studied in detail. It depends on oxygen concentration, intensity of exciting light, pH, nature of pigments, solvents etc. The thermochemiluminescence was observed after illumination of liquid and solid pigment solutions at low temperature (down to - 170C). The excitation spectra of PCL coincide with the pigment absorption spectra. The PCL emission spectra in most cases differ from those of pigment fluorescence. Electron acceptors, electron donors, radical inhibitors and β-carotene quench PCL. The quenching efficiency of electron acceptors is similar to their action on the chlorophyll triplet state. The quenching effect of radical inhibitors and β-carotene correlates with their activity in reaction with singlet oxygen. The effect of quenchers on the chlorophyll fluorescence, photobleaching and pigment sensitized oxygenation was studied. Analysis of experimental data allowed the assumption that chemiluminescence accompanies the decomposition of labile pigment peroxides. The accumulation of peroxides is probably due to the reaction in the complex of pigment and singlet oxygen, formed as a result of energy transfer from photoexcited (triplet) pigment molecules to oxygen. The terminal chemiluminescence emission proceeds from the singlet excited states of molecules of pigments and products of their oxidation.  相似文献   

18.
19.
Lipoic acid (LA) and melatonin (MT) are pleiotropic molecules participating in plant stress resistance by modulating cellular biochemical changes, ion homeostasis, and antioxidant enzyme activities. However, the combined role of these two molecules in counteracting the detrimental impacts of salinity stress is still unknown. In the present study, we determined the effects of exogenous LA (0.5 µM), MT (1 µM) and their combination (LA + MT) on growth performance and biomass accumulation, photosynthetic pigments, enzymatic and non-enzymatic antioxidant activities, and ions homeostatic in canola (Brassica napus L.) seedlings under salinity stress (0, 100 mM) for 40 days. The results indicate that exogenous application of LA + MT improved the phenotypic growth (by 25 to 45%), root thickness (by 68%), number of later lateral roots (by 52%), root viability (by 44%), and root length (by 50%) under salinity stress. Moreover, total soluble protein, chlorophyll pigments, the concentration of superoxide dismutase (SOD), catalase peroxidase (CAT), and ascorbic peroxidase (ASA) increased with the presence of salt concentration into the growth media and then decreased with the addition of LA + MT to saline solution. Leaf protein contents and the degradation of photosynthetic pigments were lower when LA + MT treatments were added into NaCl media. The proline and phenol contents decreased in the exogenous application of LA + MT treatments more than individual LA or MT treatments under the salinity stress. The incorporation of LA or MT or a combination of LA + MT to saline solution decreased salinity-induced malondialdehyde and electrolyte leakage. In conclusion, the alteration of metabolic pathways, redox modulation, and ions homeostasis in plant tissues by the combined LA and MT application are helpful towards the adaptation of Brassica napus L. seedlings in a saline environment. The results of this study provide, for the first time, conclusive evidence about the protective role of exogenous LA + MT in canola seedlings under salinity stress.  相似文献   

20.
Fruit of two apple (Malus domestica Borkh.) cultivars, differing in their ability to produce anthocyanin pigments when exposed to sunlight, have been studied using reflectance spectroscopy. Comparison of the spectra shows that apple anthocyanins in vivo possess a symmetric absorption band at 500-600 nm with a maximum near 550 nm. Anthocyanins considerably increase light absorption by apples. In on-tree-ripening Zhigulevskoe apples, accumulating high amounts of anthocyanin pigments, chlorophyll contents in sunlit and shaded sides of the fruits are found to be similar. In contrast, frequently considerably lower chlorophyll content is estimated in sunlit compared with shaded sides of Antonovka apples exhibiting low potential for anthocyanin formation. Sunlight also brings about an increase of carotenoid content over that of chlorophylls and accumulation of substances responsible for light absorption in the range 350-400 nm. The rates of high-light-induced chlorophyll bleaching in red zones of fruit containing anthocyanins are considerably lower than those in green zones and decrease with an increase in the pigment content. Anthocyanins show more stability to irradiation than chlorophylls. A protective function of anthocyanins against both light-induced stress in, and damage to, apples is suggested. It is proposed that anthocyanins function as an effective internal light trap filling the chlorophyll absorption gap in the green-orange part of the visible spectrum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号