首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
An organic dye JY1 bearing a nitro group was designed, synthesized and applied in DSCs. An unusual colour change was observed when the voltage applied to the device was reversed which was accompanied by a five-fold increase in the cell efficiency. We propose that applying a bias enabled the attachment of nitro groups to the TiO(2) surface.  相似文献   

2.
3.
Two novel trialkylsilyl-containing organic sensitizers (JK-53 and JK-54) have been designed and synthesized. Nanocrystalline TiO2–silica-based dye-sensitized solar cells (DSSCs) were fabricated using these dyes. Under standard global AM 1.5 solar conditions, the JK-53-sensitized cell gave a short-circuit photocurrent density (Jsc) of 6.37 mA cm?2, an open-circuit voltage (Voc) of 0.70 V, and a fill factor of 0.74. These values correspond to an overall conversion efficiency (η) of 3.31%. By comparison, the JK-54-sensitized cell resulted in a Jsc of 7.52 mA cm?2, a Voc of 0.71 V, and a fill factor of 0.75. These values give an overall conversion efficiency of 4.01%.  相似文献   

4.
A novel organic dye with N-substituted pyridinium as the acceptor and carboxylate as the anchoring group were designed and synthesized for dye-sensitized solar cells, which give solar energy-to-electricity conversion efficiency (η) of up to 3.47% in comparison with the reference Ru-complex (N719 dye) with an η value of 5.27% under similar experimental conditions. This new dye is simple in structure, very easy to synthesize, and gives high Voc.  相似文献   

5.
6.
We describe the application of 3-dimensional metal grid electrodes (3D-MGEs) as electron collectors in dye-sensitized solar cells (DSCs) as a replacement for fluorinated tin oxide (FTO) electrodes. Requirements, structure, advantages, and limitations of the metal grid electrodes are discussed. Solar conversion efficiencies of 6.2% have been achieved in 3D-MGE based solar cells, comparable to that fabricated on FTO (7.1%). The charge transport properties and collection efficiencies in these novel solar cells have been studied using electrochemical impedance spectroscopy.  相似文献   

7.
New indoline dye (DN319) having strong electron-withdrawing dicyanovinylidene moiety and octyl group in the terminal rhodanine ring gave higher efficiency than D205, which was known as an excellent organic dye sensitizer. This result is attributed to the bathochromic shift in the UV-vis absorption band and positive shift in the Eox level of DN319.  相似文献   

8.
We have designed and synthesized a new thiocyanate-free sensitizer coded as SPS-01 and used it as the sensitizer in a TiO(2) based nanocrystalline dye-sensitized solar cell (DSSC). SPS-01 exhibits strong visible absorption properties with maximum peak around at 532 nm. The overall power conversion efficiency (PCE) of a DSSC sensitized with SPS-01 (7.96%) is higher than that of N719 (7.30%) under identical experimental conditions. This high PCE is attributed mainly due to the improvement in the short circuit current.  相似文献   

9.
In this work, we aim to develop a viable, inexpensive and non-toxic material for counter electrodes in dye sensitized solar cells (DSSCs). We employed an ultra-simple synthesis process to deposit MoO3 thin films at low temperature by sol-gel spin coating technique. These MoO3 films showed good transparency. It is predicted that there will be 150 times reduction of precursors cost by realizing MoO3 thin films as a counter electrode in DSSCs compared to commercial Pt. We achieved a device efficiency of about 20 times higher than that of the previous reported values. In summary we develop a simple low cost preparation of MoO3 films with an easily scaled up process along with good device efficiency. This work encourages the development of novel and relatively new materials and paves the way for massive reduction of industrial costs which is a prime step for commercialization of DSSCs.  相似文献   

10.
11.
Mussel-inspired anchoring for patterning cells using polydopamine   总被引:1,自引:0,他引:1  
This Article introduces a simple method of cell patterning, inspired by the mussel anchoring protein. Polydopamine (PDA), artificial polymers made from self-polymerization of dopamine (a molecule that resembles mussel-adhesive proteins), has recently been studied for its ability to make modifications on surfaces in aqueous solutions. We explored the interfacial interaction between PDA and poly(ethylene glycol) (PEG) using microcontact printing (μCP). We patterned PDA on several substrates such as glass, polystyrene, and poly(dimethylsiloxane) and realized spatially defined anchoring of mammalian cells as well as bacteria. We applied our system in investigating the relationship between areas of mammalian nuclei and that of the cells. The combination of PDA and PEG enables us to make cell patterns on common laboratorial materials in a mild and convenient fashion.  相似文献   

12.
Titanylphthalocyanine(TiOPc) as hole transporting material(HTM) was successfully synthesized by a simple process with low cost. Perovskite solar cells using the TiOPc as HTM were fabricated and characterized. TiOPc as HTM plays an important role in increasing the power conversion efficiency(PCE) by minimizing recombination losses at the perovskite/Au interface because TiOPc as HTM can extract photogenerated holes from the perovskite and then transport quickly these charges to the back metal electrode. In the research, the β-TiOPc gives a higher PCE than α-TiOPc for the devices due to sufficient transfer dynamics. The β-TiOPc was applied in perovskite solar cells without dopping to afford an impressive PCE of 5.05% under AM 1.5G illumination at the thickness of 40 nm which is competitive with spiro-OMe TAD at the same condition. The present work suggests a guideline for optimizing the photovoltaic properties of perovskite solar cells using the TiOPc as the HTM.  相似文献   

13.
Four new donor–acceptor type polymeric metal complexes (P1, P2, P3, and P4) with the same Cd(II) complex in side chain and different conjugated backbone structures were synthesized by Yamamoto coupling and applied in dye-sensitized solar cells (DSSCs) as photosensitizers. The photophysical, electrochemical, and thermal properties were investigated in detail, showing that conjugated backbone containing fluorene improved intramolecular charge transfer and increased generation of photocurrent. The highest power conversion efficiency of 0.56% (J sc?=?1.63?mA?cm?2, V oc?=?0.69?V, FF?=?0.50) was obtained with a DSSC based on P3 under simulated air mass 1.5 G solar irradiation, which shows a new strategy to design photosensitizers for DSSCs.  相似文献   

14.
We prepared a new organic electrolyte by the reaction among acetylacetone, pyridine and iodine in 3-methoxypropionitrile. The UV–Visible spectra, conductivity measurement and ESI mass spectra were used to study this electrolyte. It was suggested that the quaternization reaction of pyridine took place in this electrolyte solution and two kinds of pyridinium iodide were formed. The efficiency of dye-sensitized solar cells (DSCs) using this electrolyte reaches 6.72%, which is higher than that of DSCs using LiI electrolyte and methylpropylimidazolium iodide electrolyte. It implies that these pyridinium iodides are effective alternative component of iodide for the electrolytes of DSCs. As this organic iodide electrolyte was in situ synthesized based on iodine instead of alkyl iodide, it will be cost-effective and facilitative for the production of DSCs.  相似文献   

15.
Four X-shaped oligothiophenes with different conjugation length were investigated as novel electron donors in single-layer bulk-heterojunction solar cells. The UV-vis absorption spectra of blends of compounds 1-4 with 1-(3-methoxycarbonyl)propyl-1-phenyl[6,6]C(61) show a remarkably red shift and broadening with increasing thiophene number at each of the four branches. The performance of the photovoltaic cells varied significantly with molecular structures of the four oligothiophenes. Conversion efficiencies increased from 0.008% to 0.8% with changing the electron donors from 1 to 4. The maximum incident photon-to-current conversion efficiency of the device based on 4 reaches 31.6%, much higher than those of three other compounds 1-3. Remarkable improvement of the device performance was achieved with increasing the substituted thiophene number. The results show that the photovoltaic effect is dependent on the structural characteristics and the film forming abilities of the X-shaped thiophenes.  相似文献   

16.
The performance of solar cell devices is dependent on various factors, and the spectral mismatch limits the upper limit of performance. Using a spectral converter to manipulate solar radiation is one way to improve solar cell efficiency. We present herein a spectral converter to move the short-wavelength (< 400 nm) range of solar radiation to the longer-wavelength range. The spectral converter comprises fluorescent lanthanide complexes uniformly embedded in silicone resin. A successful spectral converter showed transmittance of over 85%, and when applied in a Si solar cell, its relative efficiency was increased up to 4%.  相似文献   

17.

The electronic structure and absorption spectra of two D-π-A-type organic dyes with different anchoring groups have been investigated using density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The effect of anchoring groups on the electronic absorption of the free dyes on (TiO2)9 has been studied for the two carbazole dyes (MK1 and MK2). Results from DFT calculations indicate that hydroxamic acid anchoring group in MK2 lead to much stronger intermolecular charge transfer and adsorption energies on (TiO2)9 cluster. The effect of four different XC functionals (B3LYP, ωB97xD, M06-2X, and CAM-B3LYP) on the transition energies has been tested in order to explore the valid functional for the studied system. The wavelength values from the ωB97xD/6-31+G** level of theory are in excellent agreement with experimental data so this functional was considered to calculate the electronic absorption of the two studied dyes. The highest occupied molecular orbital (HOMO), the lowest unoccupied molecular orbital (LUMO), and the gap energy (H–L) of the studied dyes are slightly influenced by change of anchoring group. Results reveal that the LUMO energy levels of all studied dyes are higher than the conduction band (CB) of TiO2 (??4.00 eV). Deprotonation process enhances the efficiency of dye-sensitized solar cells during decreasing adsorption energy of dyes with (TiO2)9 cluster.

Graphical abstract

  相似文献   

18.
《Tetrahedron letters》1996,37(42):7529-7532
Several new protecting groups were introduced at the Nin-position of tryptophan, and their reactivities were examined under the conditions used for peptide synthesis by Boc-strategy. Among them, the cyclohexyloxycarbonyl (Hoc) group was found to be the most suitable in terms of stability during elongation of the peptide chain and removability at the final HF reaction without resorting to the use of thiols.  相似文献   

19.
Two new alkylpyrrolidiniumtriethoxysilyl iodides have been developed as iodide sources for DSSCs; the compound with an undecyl spacer between the siloxane and the pyrrolidinium moieties furnished higher open circuit voltages than the propyl analogue and higher efficiencies at low light intensity.  相似文献   

20.
Three new triethoxysilanes bearing quaternary ammonium alkyl iodides are reported, N,N,N-triethyl-3-(triethoxysilyl)propan-1-aminium iodide 1, N,N,N-triheptyl-3-(triethoxysilyl)propan-1-aminium iodide 2 and N,N,N-tridodecyl-3-(triethoxysilyl)propan-1-aminium iodide 3. 1H and 13C NMR spectroscopy and electrospray mass spectrometry were used to confirm the synthesis of pure products. Electrolytes based on these ionic liquids were developed and their performance in dye-sensitized solar cells (DSSCs) evaluated. The electrolytes incorporated 1 and 2 (in 30–60 wt%) as iodide sources together with I2 (0.08 M), 0.1 M guanidinium thiocyanate and 0.5 M tert-butylpyridine in acetonitrile (AN); and I2 (0.15 M) and N-methylbenzimidazole (0.5 M) for 2-methoxyproprionitrile (MPN) as co-solvent. Testing of DSSCs to analyze the influence of chain length (ethyl and heptyl) on cell efficiency revealed that, for silanes concentration of 1 M, electrolyte B (based on 2 in AN) and electrolyte C (based on 1 in MPN) gave the best cell efficiency at simulated full sunlight (AM 1.5, 1000 W m−2) illumination (5.0–5.3%). At 0.1 Sunlight (AM 1.5, 100 W m−2), electrolyte B gave the best performance of 8.0%. High open circuit voltages (VOC) of 750–850 mV were achieved for a number of quite efficient cells (5–6%). For silane 2, variation of the I/I2 ratio and total silane content (1–2 M 2) on DSSC efficiency gave a consistent efficiency of 8.0% at 0.1 Sunlight. At full sunlight, the cell efficiency decreased as the silane concentration increased from 1 M (5.0%) to 2 M (3.7%), largely due to a drop in short circuit current.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号