首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the work presented, thiol- and COOH-terminated dipyrromethene derivatives have been applied for gold electrode modification. Dipyrromethene deposited onto a solid support, after binding Cu2+, can act as a redox active monolayer. The complexation of Cu(II) ions has been performed on the surface of gold electrodes modified with dipyrromethene. The characterization of dipyrromethene-Cu(II) self-assembled monolayers (SAMs) has been done by cyclic voltammetry (CV), wettability contact angle measurements, and atomic force microscopy (AFM). The new electroactive monolayer could be applied for the immobilization of proteins and ssDNA or for electrochemical anion sensing without redox markers in the solution.  相似文献   

2.
We describe the formation of stable dithiol-bifunctionalized Ru(II)-terpyridine monolayer onto gold electrode. The coverage-dependent behavior onto gold electrode has been studied by electrochemical technique. The stability, surface charge coverage, and electron-transfer kinetics were assessed by cyclic voltammetry. Functionalized monolayer-protected Au clusters (MPCs) were also prepared. The spectroscopic characterization data of MPCs using UV-Vis and TEM techniques are discussed. TEM images showed that functionalized spherical nanoclusters of 4.7 ± 0.3 and 4.3 ± 0.2 nm were produced. The particle sizes are uniform with a narrow size distribution. The morphology of Au(1 1 1) metal surface modified with MPCs was imaged using atomic force microscopy (AFM). The nanoparticle layer exhibits a distinct surface morphology, irregularly shaped domains with dimensions from 20 to 60 nm and root mean square heights of 2.401 nm.  相似文献   

3.
Poly(ethylene glycol) (PEG) self-assembled monolayers (SAMs) are surface coatings that efficiently prevent nonspecific adhesion of biomolecules to surfaces. Here, we report on SAM formation of the PEG thiol CH3O(CH2CH2O)17NHCO(CH2)2SH (PEG(17)) on three types of Au films: thermally evaporated granular Au and two types of Au films from hydrogen flame annealing of granular Au, Au(111), and Au silicide. The different Au surfaces clearly affects the morphology and mechanical properties of the PEG(17) SAM, which is shown by AFM topographs and force distance curves. The two types of SAMs found on flame-annealed Au were denoted "soft" and "hard" due to their difference in stiffness and resistance to scratching by the AFM probe. With the aim of nanometer scale patterning of the PEG(17), the SAMs were exposed by low energy (1 kV) electron beam lithography (EBL). Two distinctly different types of behaviour were observed on the different types of SAM; the soft PEG(17) SAM was destroyed in a self-developing process while material deposition was dominant for the hard PEG(17) SAM.  相似文献   

4.
The spectroscopic and electrochemical characterizations of electrochemically stable biferrocene-modified Au clusters and chemisorbed biferrocenylalkanethiols on Au(111) surface were studied. The characterizations of biferrocene-modified Au cluster using TEM, UV-vis, and NMR techniques are also reported. Two successive reversible one-electron redox waves were observed for the biferrocenylalkanethiol Au nanoclusters and biferrocenylalkanethiol monolayers on Au(111) surface in the cyclic voltammetry. Furthermore, the positive and negative current peaks for each redox wave occur at almost the same potential, and the peak current increases almost linearly with the sweep rate. Repeat scanning does not change the voltammograms, demonstrating that these monolayers are stable to electrochemical cycling. The coverages of electroactive biferrocene in the monolayers were calculated from the cyclic voltammograms. The standard electron-transfer rate constant was calculated from the splitting between the oxidation and reduction peaks.  相似文献   

5.
Monolayers of oligo(phenylene-ethynylene) (OPE) molecules have exhibited promise in molecular electronic test structures. This paper discusses films formed from a novel molecule within this class, 2-fluoro-4-phenylethynyl-1-[(4-acetylthio)phenylethynyl]benzene (F-OPE). The conditions of self-assembled monolayer (SAM) formation were systematically altered to fabricate reproducible high-quality molecular monolayers from the acetate-protected F-OPE molecule. Detailed characterization of the F-OPE monolayers was performed by using an array of surface probes, including reflection absorbance infrared spectroscopy (RAIRS), contact angle (CA) measurements, spectroscopic ellipsometry (SE), X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and atomic force microscopy (AFM). XPS and RAIRS established that the SAM formed without removal of the F substituent and without oxidation of the thiol. The monolayer thickness, determined from SE and AFM based nanolithography, was consistent with the formation of a densely packed monolayer. The valence electronic structure of the SAM was consistent with an aromatic structure shifted by the electron-withdrawing fluorine substituent and intermolecular coupling within an oriented array of molecules.  相似文献   

6.
This paper describes the control of the nucleation and growth of calcite crystals by a matrix composed of an agarose hydrogel on top of a carboxylate-terminated self-assembled monolayer (SAM). The design of this matrix is based upon examples from biomineralization in which hydrogels are coupled with functionalized, organic surfaces to control, simultaneously, crystal morphology and orientation. In the synthetic system, calcite crystals nucleate from the (012) plane (the same plane that is observed in solution growth). The aspect ratio (length/width) of the crystals decreases from 2.1 +/- 0.22 in solution to 1.2 +/- 0.04 in a 3 w/v % agarose gel. One possible explanation for the change in morphology is the incorporation of gel fibers inside of the crystals during the growth process. Etching of the gel-grown crystals with deionized water reveals an interpenetrating network of gel fibers and crystalline material. This work begins to provide insight into why organisms use hydrogels to control the growth of crystals.  相似文献   

7.
The interaction of the 4,5-bis(diphenylthiophosphinoyl)-1,2,3-triazolate (SPTz) with different gold surfaces was investigated (nanoparticles, an electrode, and flat sheets). Studies on binding affinity of this dithiophosphin-triazolate on a gold electrode were performed by cyclic voltammetry (CV). Voltammograms exhibit two reductive desorption and only one oxidative readsorption, indicating that once reabsorbed, the molecule achieves a unique conformation. The morphology and average size of modified gold nanoparticles were studied by transmission electron microscopy (TEM) (av. diameter of 5.9 ± 1.8 nm). Further characterization was made by UV-visible (UV-vis) spectroscopy showing surface plasmon resonance (SPR) at about 580 nm. The bonding configurations of SPTz on gold have also been investigated by comparing the FT-IR and FT-Raman spectra. The 31P{1H} NMR spectrum of capped nanoparticles exhibited two sharp signals at 30.3 and 29.6 ppm and a very broad signal at 72.7 ppm. X-ray photoelectron spectroscopy (XPS) showed SPTz can accomplish a strong interaction with gold nanoparticles through bonds involving a sulfur atom and a nitrogen from the triazole ring with a free terminal PS group, forming self-assembled monolayers (SAM). This may allow subsequent functionalization through free S/N atoms of the formed SAMs. The SPTz packing led to a reduction in packing density that permits large spaces between adsorbed headgroups and the inclusion of carbon and oxygen impurities from small molecules; nevertheless, oxidized sulfur or nitrogen species were not detected, indicating the chemical stability of the obtained SAMs.  相似文献   

8.
Poly(isobutene-alt-maleic acid)s modified with p-tert-butylphenyl or adamantyl groups interact with beta-cyclodextrin self-assembled monolayers (beta-CD SAMs) by inclusion of the hydrophobic substituents in the beta-cyclodextrin cavities. The adsorption was shown to be strong, specific, and irreversible. Even with a monovalent competitor in solution, adsorption to the beta-CD SAMs was observed, and desorption proved impossible. The adsorbed polymer layer was very thin as evidenced by surface plasmon resonance spectroscopy and AFM. Apparently, all or most hydrophobic groups of the polymers were employed efficiently in multivalent binding, as was further supported by the absence of specific binding of beta-CD-modified gold nanoparticles to the polymer surface assemblies. Supramolecular microcontact printing of the polymers onto the beta-CD SAMs led to assembly formation in the targeted areas of the substrates.  相似文献   

9.
Self-assembled monolayers (SAMs) of methoxy-tri(ethylene glycol)- (EG(3)-OMe) and methyl-terminated alkanethiols (C(16)) adsorbed on polycrystalline gold were investigated by chemical force spectroscopy. Measurements were performed in aqueous electrolyte solutions depending on ionic strength and pH value. Charged and hydrophobic tips were employed as probes to mimic local patches of proteins and to study the interaction at the organic/liquid interface in detail. Force-distance curves reveal information about the origin of the observed interaction and the underlying mechanisms. The measurements confirm an effective negative surface charge to be present at the oligo(ethylene glycol) (OEG) and the methyl interface and suggest that the charges are due to the adsorption of hydroxyl ions from aqueous solution. pH-dependent measurements further support the robustness of the established charge associated with the OEG films. Its sign does not change over the whole range of investigated values between pH approximately 3.5 and approximately 10. In contrast, the hydrophobic self-assembled hexadecanethiol films on gold show an isoelectric point (IEP) around pH 4. While the mechanism of charge establishment appears to be similar for both SA films, the strength of hydrogen bonding to interfacial water, which acts as a template for hydroxyl ion adsorption, is likely to be responsible for the observed difference.  相似文献   

10.
4,4'-Dithiodipyridine (PySSPy) monolayers on Au(111) were investigated by cyclic voltammetry, X-ray photoelectron spectroscopy (XPS) and in situ scanning tunneling microscopy (STM). The studies were performed in solutions of different anions and pHs (0.1 M H2SO4, 0.1 M HClO4, 0.1 and 0.01 M Na2SO4, 0.1 and 0.01 M NaOH). The cyclic current-potential curves in H2SO4 show current peaks at about 0.4 V, which are absent for all other electrolytes at this potential. The XPS data suggest that PySSPy adsorbs via the S endgroup on the gold surface and the S-S bond breaks during adsorption. From the chemical shift of the N(ls) peak, it is concluded that in acidic media the self-assembled monolayer (SAM) is fully protonated, whereas in basic solution it is not. The pKa is estimated to be 5.3. STM studies reveal the existence of highly ordered superstructures for the SAM. In Na2SO4 and H2SO4, a (7 x mean square root of 3) structure is proposed. However, whereas in Na2SO4 solutions the superstructure does not change with potential, in 0.1 M H2SO4 the superstructure is observed only negative of the current peak at +0.4 V. At more positive potentials, the film becomes disordered. The results are compared to those for 4-mercaptopyridine (PyS) SAMs. XPS experiments and current-potential curves indicate that both molecules adsorb in the same manner on Au(111), that is, even in the case of PySSPy the adspecies is PyS. The STM results, however, call for a more subtle interpretation. While in Na2SO4 solutions the observed superstructures are the same for both SAMs, markedly different structures are found for PySSPy and PyS SAMs in 0.1 M H2SO4.  相似文献   

11.
We report the fabrication and characterization of new self-assembled monolayers (SAMs) formed from dihexadecyldithiophosphinic acid [(C(16))(2)DTPA] molecules on gold substrates. In these SAMs, the ability of the (C(16))(2)DTPA headgroup to chelate to the gold surface depends on the morphology of the gold substrate. Gold substrates fabricated by electron-beam evaporation (As-Dep gold) consist of ~50-nm grains separated by deep grain boundaries (~10 nm). These grain boundaries inhibit the chelation of (C(16))(2)DTPA adsorbates to the surface, producing SAMs in which there is a mixture of monodentate and bidentate adsorbates. In contrast, gold substrates produced by template stripping (TS gold) consist of larger grains (~200-500 nm) with shallower grain boundaries (<2 nm). On these substrates, the low density of shallow grain boundaries allows (C(16))(2)DTPA molecules to chelate to the surface, producing SAMs in which all molecules are bidentate. The content of bidentate adsorbates in (C(16))(2)DTPA SAMs formed on As-Dep and TS gold substrates strongly affects the SAM properties: Alkyl chain organization, wettability, frictional response, barrier properties, thickness, and thermal stability all depend on whether a SAM has been formed on As-Dep or TS gold. This study demonstrates that substrate morphology has an important influence on the structure of SAMs formed from these chelating adsorbates.  相似文献   

12.
The standard heterogeneous electron-transfer rate constants (k(n)0) between substrate gold electrodes and the ferrocene redox couple attached to the electrode surface by variable lengths of substituted or unsubstituted oligophenyleneethynylene (OPE) bridges as constituents of mixed self-assembled monolayers were measured as a function of temperature. The distance dependences of the unsubstituted OPE standard rate constants and of the preexponential factors (An) obtained from an Arrhenius analysis of the unsubstituted OPE k(n)0 versus temperature data are not monotonic. This surprising result, together with the distance dependence of the substituted OPE preexponential factors, may be assessed in terms of the likely conformational variability of the OPE bridges (as a result of the low intrinsic barrier to rotation of the phenylene rings in these bridges) and the associated sensitivity of the rate of electron transfer (and, hence, the single-molecule conductance which may be estimated using An) through these bridges to the conformation of the bridge. Additionally, the measured standard rate constants were independent of the identity of the diluent component of the mixed monolayer, and using an unsaturated OPE diluent has no effect on the rate of electron transfer through a long-chain alkanethiol bridge. These observations indicate that the diluent does not participate in the electron-transfer event.  相似文献   

13.
The bichromophoric system Ru-Ru(C)-PI ([(bpy)3Ru-Ph-Ru(dpb)(Metpy-PI)][PF6]3, where bpy is 2,2'-bipyridine, Hdpb is 1,3-di(2-pyridyl)-benzene, Metpy is 4'-methyl-2,2':6',2' '-terpyridine and PI is pyromellitimide) containing two Ru(II) polypyridyl chromophores with a N6 and a N5C ligand set, respectively, was synthesized and characterized. Its photophysical properties were investigated and compared to those of the monochromophoric cyclometalated complexes Ru(C)-PI ([Ru(dpb)(Metpy-PI)][PF6]), Ru(C)-phi-PI ([Ru(dpb)(ttpy-PI)][PF6], ttpy is 4'-p-tolyl-2,2':6',2' '-terpyridine), Ru(C)-phi ([Ru(dpb)(ttpy)][PF6]), and Ru(C) ([Ru(dpb)(Metpy)][PF6]). Excitation of the Ru(C) unit in the dyads leads to oxidative quenching, forming the Ru(C)(III)-phi-PI*- and Ru(C)(III)-Pl.- charge-separated (CS) states with k(f)(ET) = 7.7 x 10(7) s(-1) (CH3CN, 298 K) in the tolyl-linked Ru(C)-phi-PI and k(f)(ET) = 4.4 x 10(9) s(-1) (CH2Cl2, 298 K) in the methylene-linked Ru(C)-PI. In the Ru-Ru(C)-PI triad, excitation of the Ru(C) chromophore leads to dynamics similar to those in the Ru(C)-PI dyad, generating the Ru(II)-Ru(C)(III)-PI*- CS state, whereas excitation of the Ru unit results in an initial energy transfer (k(EnT) = 4.7 x 10(11) s(-1)) to the cyclometalated Ru(C) unit. Subsequent electron transfer to the PI acceptor results in the formation of the same Ru(II)-Ru(C)(III)-PI*- CS state with k(f)(ET) = 5.6 x 10(9) s(-1) that undergoes rapid recombination with k(b)(ET) = 1 x 10(10) s(-1) (CH2Cl2, 298 K). The fate of the Ru(II)-Ru(C)(III)-PI*- CS state upon a second photoexcitation was studied by pump-pump-probe experiments in an attempt to detect the fully charge-separated Ru(III)-Ru(C)(II)-PI*- state.  相似文献   

14.
Two relatively simple approaches are developed and used to calculate (predict) the standard interfacial electron-transfer (ET) rate constants (k degrees) of the Ru(NH3)6(3+/2+) couple dissolved in aqueous electrolyte solutions in contact with Au electrodes coated with self-assembled monolayers (SAMs) composed of HS(CH2)nOH as functions of both n and temperature. These approaches are suggested by the conclusion reached by Smalley et al. (J. Electroanal. Chem. 2006, 589, 1-6) that the interfacial ET rate of a solution-dissolved redox couple in contact with a SAM is, within 1 order of magnitude, the same as the (normalized) interfacial ET rate of a similar attached (as a constituent of a similar SAM) couple. The calculations, therefore, employ the measured electronic coupling of the attached (to Au electrodes through alkanethiolate bridges) -PyRu(NH3)5(3+/2+) couple. The two approaches also both include dynamic solvent effects on the ET kinetics and the influence of electronic coupling on the activation barrier for the ET reaction. At T=298 K and n=3, 11, and 14, the predicted rate constants are in very good agreement with the existing measurements of k degrees. However, for n<3 at 298 K, the predicted rate constants are extremely large (i.e., >4.5 cm s(-1)) and do not tend toward a limiting value. Additionally, even if the electronic coupling between a Au electrode and a Ru(NH3)6(3+/2+) moiety located at the surface of the SAM is >0.1 eV, the calculated standard rate constant is not directly proportional to the inverse of the longitudinal dielectric time of the solvent. A primary reason for both the absence of a limiting value for the predicted k degrees's at 298 K and the attenuated influence of dynamic solvent effects is the activation energy barrier suppression caused by large values of the electronic coupling.  相似文献   

15.
Self-assembled monolayers of omega-(4'-methylbiphenyl-4-yl) alkane thiols CH3(C6H4)2(CH2)(n)SH (BPn, n = 2, 3, and 5) on Au(111) substrates, prepared at room and elevated temperatures, were studied using scanning tunneling microscopy. In contrast to the biphenyl thiol analogues with n = 0 or 1, ordered domains of large size are formed which exhibit small, periodic height variations on a length scale of several nanometers. These are attributed to solitons (or domain walls), resulting from structural mismatch between the molecular adlayer and the gold substrate. The implications of these results for the design of aromatic thiols to cope with stress and yield low-defect density self-assembled monolayers are discussed.  相似文献   

16.
Alkanethiol self-assembled monolayers on Au(111) are widely studied, yet the exact nature of the sulfur-gold bond is still debated. Recent studies suggest that Au(111) is significantly reconstructed, with alkanethiol molecules binding to gold adatoms on the surface. These adatoms are observed using scanning tunneling microscopy before and after removing the organic monolayer with an atomic hydrogen beam. Upon monolayer removal, changes in the gold substrate are seen in the formation of bright, triangularly shaped islands, decreasing size of surface vacancy islands, and faceting of terrace edges. A 0.143 +/- 0.033 increase in gold coverage after monolayer removal shows that there is one additional gold adatom for every two octanethiol molecules on the surface.  相似文献   

17.
Fully conjugated organic molecules, such as the oligo(phenyleneethynylene) (OPE) systems, are of growing interest within the field of molecular electronics, as is the self-assembly of well-defined molecular thin films with predefined functions. The structure and function of such films are intimately related and governed by the structures of their molecular constituents, through the intermolecular interactions and the interactions between the molecules and the substrate, onto which the film is assembled. Here we report on the synthesis of a series of three OPE derivatives, with the general structure phenylethynylene-aryl-ethynylenephenylene-headgroup, and the structural investigation of the self-assembled monolayers (SAMs) formed from them on Au(111) surfaces. The SAMs were characterized by infrared reflection-absorption spectroscopy, spectroscopic ellipsometry, high-resolution X-ray photoemission spectroscopy, and near-edge X-ray absorption fine structure spectroscopy. The effective thickness of the SAMs was observed to decrease as the pi-system of the aryl moiety of the OPE adsorbate was extended perpendicular to its molecular long axis. Changing the aryl moiety from benzene to naphthalene to anthracene resulted in lower molecular surface densities and larger molecular inclination. The average tilt angles for the benzene, naphthalene, and anthracene SAMs were found to be about 30 degrees , 40 degrees , and 42 degrees from the surface normal, respectively. For the largest adsorbate, the anthracene derivative, there is spectroscopic evidence suggesting the existence of nonequivalent binding sites. The differences observed between the SAMs are rationalized in terms of the shape of the adsorbates and the strength of the pi-pi interactions between them.  相似文献   

18.
Molecular ordering of pyrrolyl-terminated alkanethiol self-assembled monolayers (PyC(n)SH SAMs) on Au(111) substrates (n = 11 or 12) was investigated by scanning tunneling microscopy (STM) and various spectroscopic methods. The SAMs, which were in a disordered state when formed at room temperature, could be ordered either globally by thermal annealing at 70 degrees C, or locally via stimulation with repetitive STM scans. The ordered phase was characterized by small domains of molecular rows formed along 112[combining macron] directional set with an inter-row corrugation period close to 1.44 nm, in which defects were abundant. Based on the experimental results, the molecular arrangement in the ordered PyC(n)SH SAM was proposed to be a (5x radical3)rect structure with a molecular deficiency >or=10%. While mechanical interactions between molecules and scanning probe tips had been pointed out as the major cause of scan-induced phase transformations in other SAM systems, electronic or electrostatic factors were thought to affect considerably the scan-induced ordering process in this SAM system. From comparison of surface molecular coverage between disordered and thermally ordered SAMs of PyC(12)SH, it was inferred that the disorder could be ascribed to both kinetic and thermodynamic factors. The kinetic barrier to the ordered phase was supposed to result from strong dipole-dipole interactions among the pyrrolyl endgroups.  相似文献   

19.
It is demonstrated that thiols can adsorb to gold without losing hydrogen. Dodecyl sulfide-capped gold clusters have been prepared and subjected to ligand exchange reactions in perdeuterated benzene by addition of dodecanethiol and subsequently dodecyl disulfide. It is shown by 1H NMR spectroscopy that dodecanethiol molecules are readily taken up as ligands producing characteristic broad signals corresponding to the alpha-methylene and S-H protons, with chemical shifts close to those found for thiol in solution; these signals are absent in spectra of thiolate-capped clusters. Addition of excess disulfide to such clusters capped with both dialkyl sulfides and thiols leads to the appearance of sharp signals for free dialkyl sulfide and intact thiol. Amounts of thiols up to 50% of the ligand shell are, however, taken up by the clusters under rapid and irreversible loss of hydrogen.  相似文献   

20.
The assembly of poly(lactic acid) (PLA) nanoparticles on a 12-aminodecanoic acid (ADA) self-assembled monolayer (SAM) is described. Assembly is accomplished through electrostatic interactions between the positively charged SAM and the negatively charged PLA nanoparticles. The strategy used involves two steps in which a preliminary electrochemical coating of the ADA SAM is followed by a second step that involves immersing the SAM in a solution containing gold or PLA nanoparticles. The SAM was characterized by using cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), FTIR spectroscopy, and contact angle measurements, whereas scanning electron microscopy (SEM) was used to image the nanoparticles after electrostatic attachment was achieved. We found that the surface coverage of the nanoparticles could be controlled by modulating the electrostatic interactions between the negatively charged particles and the positively charged SAM surface by varying the pH of the nanoparticle solution, the immersion time, and the number of cyclic voltammetry scans under which the SAM was formed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号