首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The Feynman-Haken variational path integral theory is, for the first time, generalized to calculate the ground-state energy of an electron coupled simultaneously to a Coulomb potential and to a longitudinal-optical (LO) phonon field in parabolic quantum wires. It is shown that the polaronic correction to the ground-state energy is more sensitive to the electron-phonon coupling constant than the Coulomb binding parameter and monotonically stronger as the effective wire radius decreases. We apply our calculations to several semiconductor quantum wires and find that the polaronic correction can be considerably large. Received 16 November 1998  相似文献   

2.
The general properties of one-dimensional large Fr?hlich polarons in motion are investigated with the previous extended coherent states where two-phonon correlations are considered. As a result, the polaron energy, velocity, effective mass, and average number of virtual phonons as a function the polaron total momentum are evaluated in a wide range of the coupling constant. In addition, rich information about virtual phonons emitted by the electron in motion is obtained. More importantly, some intrinsic features of 1D moving polarons are presented for the first time, which may also be suited to moving polarons in more than one dimensions. Received: 23 October 1997 / Revised and Accepted: 27 January 1998  相似文献   

3.
The translationally invariant diagrammatic quantum perturbation theory (TPT) is applied to the polaron problem on the 1D lattice, modeled through the Holstein Hamiltonian with the phonon frequency ω0, the electron hopping t and the electron-phonon coupling constant g. The self-energy diagrams of the fourth-order in g are calculated exactly for an intermittently added electron, in addition to the previously known second-order term. The corresponding quadratic and quartic corrections to the polaron ground state energy become comparable at t/ω0>1 for g/ω0∼(t/ω0) 1/4 when the electron self-trapping and translation become adiabatic. The corresponding non adiabatic/adiabatic crossover occurs while the polaron width is large, i.e. the lattice coarsening negligible. This result is extended to the range (t/ω0)1/2>g/ω0>(t/ω0)1/4>1 by considering the scaling properties of the high-order self-energy diagrams. It is shown that the polaron ground state energy, its width and the effective mass agree with the results found traditionally from the broken symmetry side, kinematic corrections included. The Landau self-trapping of the electron in the classic self-consistent, localized displacement potential, the restoration of the translational symmetry by the classic translational Goldstone mode and the quantization of the polaronic translational coordinate are thus all encompassed by a quantum theory which is translationally invariant from the outset. This represents the first example, open to various generalizations, of the capability of TPT to hold through the adiabatic symmetry breaking crossover. Plausible arguments are also given that TPT can describe the g/ω0>(t/ω0)1/2 regime of the small polaron with adiabatic or non-adiabatic translation, i.e., that TPT can cover the whole g/ω0, t/ω0 parameter space of the Holstein Hamiltonian.  相似文献   

4.
Optical properties of an interacting large polaron gas   总被引:1,自引:0,他引:1  
The normal state conductivity, , of a system of interacting large polarons is calculated within the Random Phase approximation and some numerical results are presented. The behaviour of the optical absorption as a function of the charge carrier density and of the temperature is analyzed for different values of the electron-phonon coupling constant. It is shown that exhibits features similar to those observed in the infrared spectra of the cuprates. Received 27 January 1999  相似文献   

5.
In the limit of strong electron-phonon coupling, we provide a unified insight into the stability criterion for bipolaron formation in low-dimensionally confined media. The model that we use consists of a pair of electrons immersed in a reservoir of bulk LO phonons and confined within an anisotropic parabolic potential box, whose barrier slopes can be tuned arbitrarily from zero to infinity. Thus, encompassing the bulk and all low-dimensional geometric configurations of general interest, we obtain an explicit tracking of the critical ratio of dielectric constants below which bipolarons can exist. Received 15 September 1999 and Received in final form 20 March 2000  相似文献   

6.
Within the framework of the dielectric continuum model, interface optical(IO) and surface optical(SO) phonon modes and the Fr?hlich electron-IO (SO) phonon interaction Hamiltonian in a multi-shell spherical system were derived and studied. Numerical calculation on CdS/HgS/H2O and CdS/HgS/CdS/H2O spherical systems have been performed. Results reveal that there are two IO modes and one SO mode for the CdS/HgS/H2O system, one SO mode and four IO modes whose frequencies approach the IO phonon frequencies of the single CdS/HgS heterostructure with the increasing of the quantum number l for CdS/HgS/CdS/H2O. It also showed that smaller l and SO phonon compared with IO phonon, have more significant contribution to the electron-IO (SO) phonon interaction. Received 16 October 2001 and Received in final form 23 January 2002 Published online 25 June 2002  相似文献   

7.
We consider a three dimensional Wigner crystal of electrons lying in a host ionic dielectric. Owing to their interaction with the lattice polarization, each localized electron forms a polaron. We study the collective excitations of such a polaronic Wigner crystal at zero temperature, taking into account the quantum fluctuations of the polarization within the Feynman harmonic approximation. We show that, contrary to the ordinary electron crystal, the system undergoes a polarization catastrophe when the density is increased. An optical signature of this instability is derived, whose trend agrees with the experiments carried out in Nd-based cuprates. Received 4 July 2002 Published online 17 September 2002  相似文献   

8.
9.
An analytic study is presented of the Ee Jahn-Teller (JT) polaron, consisting of a mobile eg electron linearly coupled to the local eg normal vibrations of a periodic array of octahedral complexes. Due to the linear coupling, the parity operator and the angular momentum operator commute with the JT part and cause a twofold degeneracy of each JT eigenvalue. This degeneracy is lifted by the anisotropic hopping term. The Hamiltonian is then mapped onto a new Hilbert space, which is isomorphic to an eigenspace of belonging to a fixed angular momentum eigenvalue j > 0. In this representation, the Hamiltonian depends explicitly on j and decomposes into a Holstein term and a residual JT interaction. While the ground state of the JT polaron is shown to belong to the sector j = 1/2, the Holstein polaron is obtained for the “unphysical” value j = 0. The new Hamiltonian is then subjected to a variational treatment, yielding the dispersion relations and effective masses for both kinds of polarons. The calculated polaron masses are in remarkably good agreement with recent quantum Monte Carlo data. The possible relevance of our results to the magnetoresistive manganite perovskites is briefly discussed. Received 6 July 2001  相似文献   

10.
Interface polarons in a realistic heterojunction potential   总被引:9,自引:0,他引:9  
The ground states of interface polarons in a realistic heterojunction potential are investigated by considering the bulk and the interface optical phonon influence. A self-consistent heterojunction potential is used and an LLP-like method is adopted to obtain the polaron effect. The numerical computation has been done for the Zn1-xCdxSe/ZnSe system to obtain the polaron ground state energy, self energy and effective mass parallel to the interface. A simplified coherent potential approximation is developed to obtain the parameters of the ternary mixed crystal and the energy band offset of the heterojunction. It is found that at small Cd concentration the bulk longitudinal optical phonons give the main contribution for lower areal electron densities, whereas the interface phonon contribution is dominant for higher areal electron densities. The interface polaron effect is weaker than the effect obtained by the three dimensional bulk phonon and by the two dimensional interface phonon models. Received 17 September 1998  相似文献   

11.
Photoinduced IR absorption measurements are reported on WO3. A photoinduced midinfrared small polaron peak centered at 4800 cm-1 (0.59 eV) was observed. The data were analyzed in the framework of the photon-assisted small-polaron hopping theory and briefly compared to previously published infrared absorption measurements in WO3 and photoinduced IR absorption measurements in high T c cuprates. Received 20 April 2001 and Received in final form 13 July 2001  相似文献   

12.
A new perturbation approach is developed for single- and many-electron Holstein model in one-, two-, and three-dimension. The results show that this approach has a good agreement with the Migdal theory in the adiabatic regime when the coupling is moderate (λ < 1), but with the Lang-Firsov theory in the antiadiabatic regime ( ω/W≫ 1). In the intermediate region, our approach can describe the transition from a large-polaron Fermi-liquid to the small-polaron, and this transition may be discontinuous in adiabatic regime, which means a phase transition appears in many-electron system. In single-electron case, we eliminate the abrupt transition using the degenerate perturbation theory, and the calculated ground state energy and effective mass are successfully compared with those of previous authors. Besides, the method has the advantage of requiring little computational effort. Received 27 December 2001 / Received in final form 8 April 2002 Published online 31 July 2002  相似文献   

13.
We derive a realistic microscopic model for doped colossal magnetoresistance manganites, which includes the dynamics of charge, spin, orbital and lattice degrees of freedom on a quantum mechanical level. The model respects the SU(2) spin symmetry and the full multiplet structure of the manganese ions within the cubic lattice. Concentrating on the hole doped domain ( 0≤x≤0.5) we study the influence of the electron-lattice interaction on spin and orbital correlations by means of exact diagonalisation techniques. We find that the lattice can cause a considerable suppression of the coupling between spin and orbital degrees of freedom and show how changes in the magnetic correlations are reflected in dynamic phonon correlations. In addition, our calculation gives detailed insights into orbital correlations and demonstrates the possibility of complex orbital states. Received 4 September 2002 / Received in final form 8 November 2002 Published online 31 December 2002  相似文献   

14.
Our recent experiments show that arrays of underdamped Josephson junctions radiate coherently only above a threshold number of junctions switched onto the radiating state. For each junction, the radiating state is a resonant step in the current-voltage characteristics due to the interaction between the junctions in the array and an electromagnetic cavity. Here we show that a model of a one-dimensional array of Josephson junctions coupled to a resonator can produce many features of the coherent be havior above threshold, including coherent radiation of power and the shape of the array current-voltage characteristic. The model also makes quantitative predictions about the degree of coherence of the junctions in the array. However, in this model there is no threshold; the experimental below-threshold region behavior could not be reproduced.Received: 11 April 2003, Published online: 23 July 2003PACS: 74.50.+r Tunneling phenomena; point contacts, weak links, Josephson effects - 85.25.-j Superconducting devices  相似文献   

15.
In the presence of a magnetic field the Hamiltonian of the single or double polaron bound to a helium-type donor impurity in semiconductor quantum wells (QWs) are given in the case of positively charged donor center and neutral donor center. The couplings of an electron and the impurity with various phonon modes are considered. The binding energy of the single and double bound polaron in AlxlGa 1-xlAs/GaAs/AlxrGa 1-xrAs QWs are calculated. The results show that for a thin well the cumulative effects of the electron-phonon coupling and the impurity-phonon coupling can contribute appreciably to the binding energy in the case of ionized donor. In the case of neutral donor the contribution of polaronic effects are not very important, however the magnetic field significantly modifies the binding energy of the double donor. The comparison between the binding energies in the case of the impurity placed at the quantum well center and at the quantum well edge is also given. Received 16 February 1999  相似文献   

16.
The reflectivity spectrum of a polyaniline CSA-doped in presence of m-cresol has been measured over the wide wavenumber range 25-15,000 cm-1 (0.003-1.9 eV) for three different doping levels. Since spectra cannot be fitted correctly with the conventional Drude model, several extensions are tested. A model derived from the factorized form of the dielectric response and including the effect of Anderson localization in disordered metals, is proposed and found to yield good fit to data with a satisfactory physical meaning. Data are reduced to a small number of parameters potentially useful for further comparison with other conducting polymers or even other non-Drude conducting media like oxides. Received 6 February 2002 / Received in final form 12 August 2002 Published online 27 January 2003 RID="a" ID="a"e-mail: gervais@delphi.phys.univ-tours.fr RID="b" ID="b"UMR 6157 CNRS/CEA  相似文献   

17.
Polaron effects on excitons in parabolic quantum wells are studied theoretically by using a variational approach with the so-called fractional dimension model. The numerical results for the exciton binding energies and longitudinal-optical phonon contributions in GaAs/Al0.3Ga0.7As parabolic quantum well structures are obtained as functions of the well width. It is shown that the exciton binding energies are obviously reduced by the electron (hole)-phonon interaction and the polaron effects are un-negligible. The results demonstrate that the fractional-dimension variational theory is effectual in the investigations of excitonic polaron problems in parabolic quantum wells.  相似文献   

18.
19.
A simple approach to the many-polaron problem for both weak and intermediate electron-phonon coupling and valid for densities much smaller than those typical of metals is presented. Within the model the total energy, the collective modes and the single-particle properties are studied and compared with the available theories. It is shown the occurrence of a charge density wave instability in the intermediate coupling regime. Received 13 May 1998  相似文献   

20.
Substitutional impurity ions in crystals are known to displace off-center and to perform hindered rotations around the ideal lattice positions. The vibronic theory to describe both the off-center displacements and the hindered rotations by a single angular equation incorporates terms up to 3rd order in the off-center displacement coordinates. When the rotation is confined to a single plane, the corresponding vibronic equation is equivalent to Mathieu's equation. Extending our earlier work, we derive here the dipole-dipole coupling to take into account cooperative phenomena. We also derive the optical absorption band arising from dipolar transitions across “Mexican Hat” surfaces, and we show that hindered rotations gives rise to magnetic moments quantized in rotational bands. Received 18 October 2001 / Received in final form 5 March 2002 Published online 2 October 2002 RID="a" ID="a"e-mail: allxrose@hotmail.com  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号