首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We first found experimentally a cycloaddition reaction of a molecule on a symmetry Si pair, 1,3-butadiene on the Si adatom pair of Si(111)7x7, while up to now only asymmetric Si pairs were reported to be involved in cycloaddition reactions on Si surfaces. As the symmetry of a Si pair is expected to influence significantly a cycloaddition product and a reaction pathway, the [4+2]-like cycloaddition product of 1,3-butadiene on the Si adatom pair is suggested to form through a concerted reaction pathway in comparison to a stepwise reaction pathway, which is favorable in the formation of the [4+2]-like cycloaddition product on the asymmetric Si pair (the Si adatom-restatom pair).  相似文献   

2.
A novel CuI-catalyzed exo-selective asymmetric [C+NC+CC] coupling reaction is reported that provides unprecedented access to a variety of highly functionalized 4,5-trans disubstituted pyrrolidines in a single operation. The reaction complements and extends our AgI-catalyzed endo-selective [C+NC+CC] asymmetric coupling reaction.  相似文献   

3.
The Pauson--Khand reaction represents a one-step Co(2)(CO)(8)-catalyzed synthesis of cyclopentenone through [2 + 2 + 1] assembly of one molecule each of alkene, alkyne, and carbon monoxide. Density functional studies (B3LYP/631LAN) on the reaction pathway of the Pauson--Khand (PK) reaction reported here for the first time provides valuable information on the structures and energetics of various intermediates and transition states. The PK reaction consists of olefin insertion, CO insertion, and reductive elimination steps. The olefin insertion step was found to be an irreversible step that determines the stereo- and regiochemistry of the overall reaction. The following steps are low activation energy processes and reversible. The bond-forming events occur only on one of the two metal atoms, while the second metal atom not only acts as an anchor that fixes the metal cluster to the organic substrate but also exerts electronic influences on the reaction at the first atom.  相似文献   

4.
Guan XY  Wei Y  Shi M 《Organic letters》2010,12(21):5024-5027
A P(p-FC(6)H(4))(3)-catalyzed tandem reaction between ethyl 2,3-butadienoate and nitroalkenes has been developed, which involves a [3 + 2] cycloaddition and a subsequent umpolung addition. The asymmetric version of this tandem reaction has also been investigated by using chiral phosphanes.  相似文献   

5.
[reaction: see text] Push-pull dipoles generated from the Rh(II)-catalyzed reaction of diazo imides containing tethered heteroaromatic rings undergo successful [3 + 2]-cycloaddition across the 2,3-pi-bond to provide novel pentacyclic compounds in good to excellent yields in a stereocontrolled fashion. The facility of the cycloaddition is critically dependent on conformational factors in the transition state.  相似文献   

6.
Bee C  Leclerc E  Tius MA 《Organic letters》2003,5(26):4927-4930
The PdCl(2)-catalyzed cyclization of alpha-alkoxy dienones leads to 2-hydroxycyclopentenones, whereas the Pd(OAc)(2)-catalyzed reaction leads to cross-conjugated cyclopentenones through an oxidative process. [reaction: see text]  相似文献   

7.
A novel Pd0-catalyzed asymmetric [4+3] annulation reaction of two readily accessible starting materials has been developed for building seven-membered heterocyclic architectures. The potential [3+2] side pathway could be suppressed though fine tuning of the conditions. A broad scope of cycloaddition donors and acceptors participated in the transformation with excellent chemo-, regio-, diastereo-, and enantioselectivtities, leading to valuable tetrahydroazepines and benzo[b]oxepines.  相似文献   

8.
A Pd(II)-catalyzed cascade synthesis of diverse polycyclic aromatic hydrocarbons via transient directing group strategy has been developed, involving the consecutive arylation, cyclization and aromatization. The efficiency and practicality were demonstrated by wide substrate range, concise synthetic pathway and mild reaction conditions. The subsequent transformations of the benz[a]anthracene core accessed natural bioactive PAH molecules.  相似文献   

9.
Quantum chemical calculations at the BP86/def2-SVP levels of theory have been carried out for the reaction pathways of the [Co(L)] (+)-catalyzed Diels-Alder reaction of isoprene with phenylacetylene, with L = dppe, iminA, iminB. The calculations suggest that the reactions take place in a stepwise fashion, starting with the formation of the complex [Co(L)(isoprene)(phenylacetylene)] (+) as precursor for the consecutive C-C bond formation. The actual Diels-Alder ring-closing reaction proceeds as an intramolecular addition of the ligands isoprene and phenylacetylene, yielding a metallacyclic intermediate after generation of the first carbon-carbon bond, which determines the regioselectivity of the reaction. There are four different conformations of the starting complexes [Co(L)(isoprene)(phenylacetylene)] (+) which initiate four different pathways yielding the 1,3-cyclohexadiene product. The energetically most stable conformations do not lead to the reaction pathways that have the lowest activation energies. All conformations and the associated pathways must be considered in order to obtain the kinetically most favorable reaction course. The calculated values for the regioselectivities of the [Co(L)] (+)-catalyzed Diels-Alder reaction agree exceptionally well with the experimental values. The calculations concur with the experimental finding that the para product is kinetically favored for L = dppe while the formation of the meta product is kinetically favored when L = iminA or iminB. The different regioselectivies for L = dppe and L = iminA or iminB come from (a) the steric interactions of the bidentate ligands with the isoprene and phenylacetylene moieties in [Co(L)(isoprene)(phenylacetylene)] (+), which determine the distance between the carbon atoms forming the C-C bond, and (b) the relative energies of the different starting complexes. The first C-C bond formed in the rate-determing step of the [Co(dppe)] (+)-catalyzed reaction yielding the para product is the C4-C1' bond, and for the meta product it is the C1-C1' bond. The opposite order is found for the [Co(iminA)] (+)- and [Co(iminB)] (+)-catalyzed reactions, where the C1-C2' bond formation is the initial step toward the para product, while the C4-C2' bond is first formed in the reaction yielding the meta product. The calculations suggest that a less polar solvent should reduce the preference for formation of the meta product in the [Co(iminA)] (+)- and [Co(iminB)] (+)-catalyzed reactions but would enhance the formation of the para product in the [Co(dppe)] (+)-catalyzed reaction. Experimental tests using toluene as solvent instead of dichloromethane confirm the theoretical predictions.  相似文献   

10.
A series of beta-(trichloroacetyl)amino alpha-diazo carbonyl compounds have been synthesized, and their Rh(II)-catalyzed reaction was investigated. 1,2-Migration was the predominant reaction pathway, and the migratory aptitude was found to be dramatically affected by the beta-substituents. The 1,2-vinyl and 1,2-acetylenyl group migration occurs preferentially in the presence of beta-hydrogen in Rh(2)(OAc)(4)-catalyzed reaction of beta-(trichloroacetyl)amino alpha-diazo carbonyl compounds. A possible reaction mechanism is discussed.  相似文献   

11.
Conversion of acyclic allenynes to polycyclic compounds using consecutive transition metal catalyzed carbon-carbon bond forming reactions in a single chemical operation is described. Reaction of an allenyne with a Rh(I) catalyst affords a cross-conjugated triene via a formal Alder-ene reaction. The triene then participates in a Rh(I)-catalyzed intramolecular [4+2] cycloaddition reaction to generate a new conjugated diene. An external dienophile is added to this diene which then undergoes a second [4+2] cycloaddition reaction to afford a complex polycyclic ring system. This reaction sequence demonstrates the synthetic potential of allenynes and cross conjugated trienes and highlights the rapid increases in molecular complexity that are possible by one-pot sequential transition metal catalyzed carbon-carbon bond forming reactions.  相似文献   

12.
Ma S  Gao W 《Organic letters》2002,4(17):2989-2992
[reaction: see text] Substituent effects on the allene moiety and the N-protecting group were found to be the dominant factor in determining the reaction paths in the Pd(0)-catalyzed coupling-cyclization reaction of beta-amino allenes with organic halides.  相似文献   

13.
Harris JM  Padwa A 《Organic letters》2003,5(22):4195-4197
[reaction: see text]. A short and efficient synthesis of the beta-carbolinone ring system was achieved using a rhodium(II)-catalyzed [3 + 2]-cycloaddition, a Pd(0)-catalyzed C-N amination reaction, and a subsequent intramolecular Heck reaction as the key synthetic steps.  相似文献   

14.
The total synthesis of (+)-asteriscanolide starting from two commercially available materials has been accomplished in 19 steps with a 3.8% overall yield. The key reaction is a chiral ene-vinylcyclopropane substrate induced Rh(I)-catalyzed [(5+2)+1] cycloaddition that efficiently constructs the [6.3.0] carbocyclic core with complete asymmetric induction.  相似文献   

15.
Loh TP  Chen SL 《Organic letters》2002,4(21):3647-3650
[reaction: see text] A one-pot InCl(3)-catalyzed Mannich-type reaction was carried out in methanol. High diastereoselectivities and high yields were obtained. In addition, after the reaction was completed, InCl(3) can be recycled and reused without a drop of activity and selectivity.  相似文献   

16.
Pyridines can be efficiently synthesized by Ru(II)-catalyzed [2 + 2 + 2] cycloaddition of 1,6-diynes to alpha,omega-dinitriles or electron-deficient nitriles or by Ru(II)-catalyzed [2 + 2 + 2] cocyclization of electron-deficient alkynes and electron-deficient nitriles. The reactions with dinitriles seem likely to proceed via ruthenacyclopentadiene intermediates and the reactions with electron-poor nitriles via azaruthenacyclopentadienes. The reaction with asymmetric electron-deficient alkynes affords 2,3,6-trisubstituted pyridines in good yield.  相似文献   

17.
Two recent experiments for adsorbed acrylonitrile on the Si(001) surface reported different adsorption structures at 110 and 300 K. We investigate the reaction of acrylonitrile on Si(001) by first-principles density-functional calculations. We find that the so-called [4+2] structure in which acrylonitrile resides between two dimer rows is not only thermodynamically favored over other structural models but also easily formed via a precursor where the N atom of acrylonitrile is attached to the down atom of the Si dimer. The additional initial-state theory calculation for the C 1s core levels of adsorbed acrylonitrile provides an interpretation for the observed low- and room-temperature adsorption configurations in terms of the precursor and [4+2] structures, respectively.  相似文献   

18.
A broad range of functionalized 5-alkylidenecyclopentene derivatives are synthesized by the rhodium(I)-catalyzed [3+2]-cyclization reaction of chromium alkenyl(methoxy)carbene complexes 1 and activated allenes. Thus, amidocyclopentenes 4a-n are readily available from N-allenylamides 2a-c, while phenoxyallene 2e gives access to phenoxycyclopentenes 6. In turn, the cyclization reaction with (alkoxycarbonyl)allenes 3 leads to (alkoxycarbonyl)methylidenecyclopentenes 7-10. In terms of selectivity, most cyclization reactions take place with complete chemo-, regio-, and diastereoselectivity. Representative cycloadducts are efficiently hydrolyzed to the corresponding 2-alkylidenecyclopentanones 11a-e without tautomerization or isomerization. Finally, a tentative reaction pathway is proposed that involves the rhodium(I) carbene complexes as the species responsible for the [3+2]-cyclization.  相似文献   

19.
The Rh(I)-catalyzed Pauson-Khand reaction of allenynes afforded the bicyclo[6.3.0]undecadienones as well as their benzo and furo derivatives. In addition, a novel [RhCl(CO)2]2-catalyzed [2,3]-sigmatropic rearrangement of the sulfinic ester species of propargyl alcohols was developed.  相似文献   

20.
Here we employ density functional theory calculations to systematically investigate the underlying mechanism of Cu(OTf)2-catalyzed [3+2] cycloaddition reactions in the synthesis of CF3-substituted pyrazolidines. About eight possible initial configurations of the [3+2] reaction is considered, and all relevant reactants, transition states, and products are optimized. Based on these structures, internal reaction coordinate paths, and wavefunction analysis results, we conclude that the Cu(OTf)2-catalyzed [3+2] cycloaddition follows a concerted asynchronous mechanism. The C N bond forms immediately after the formation of the C C bond. Among the eight reaction paths, the energy barrier for the [3+2] reaction that leads to the CF3-substituted syn-pyrazolidine is the lowest, ∼5.4 kcal/mol, which might result in the diastereoselectivity that is observed in the experiment. This work not only gives the detailed mechanism of the Cu(OTf)2-catalyzed [3+2] cycloaddition but can also be helpful for the future designation of Cu(OTf)2-based cycloaddition processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号