首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The theory for axisymmetric stagnation point flow of power-law fluids has been extended to include the correction terms for convective diffusion at moderate Schmidt numbers. The dimensionless mass transfer rate is expressed as an asymptotic series that is valid for Re(1 ? n)/3(1 + n)Sc?13 < 1. The result can be used to predict accurate diffusion coefficients for dilute species in fluids with specified power-law characteristics.  相似文献   

2.
3.
The boundary layer flow and heat transfer on a stretched surface moving with prescribed skin friction is studied for permeable surface. Three major cases are studied for isothermal surface (n=0) stretched corresponding to different dimensional skin friction boundary conditions namely; skin friction at the surface scales as (x ?1/2) at m=0, constant skin friction at m=1/3 and skin friction scales as (x) at m=1. The constants m and n are the indices of the power law velocity and temperature exponent respectively. Similarity solutions are obtained for the boundary layer equations subject to power law temperature and velocity variation. The effect of various governing parameters, such as Prandtl number Pr, suction/injection parameter f w , m and n are studied. The results show that for isothermal surface increasing m enhances the dimensionless heat transfer coefficient for fixed f w at the suction case and the reverse is true at the injection case. Furthermore, for fixed m, as f w increases the dimensionless heat transfer coefficient increases. Large enhancements are observed in the heat transfer coefficient as the temperature boundary condition along the surface changes from uniform to linear where the dimensional skin friction is of order (x) at m=1. This enhancement decreases as the suction increases.  相似文献   

4.
A rigorous analysis of non-Newtonian boundary layer flow of power-law fluids over a stretching sheet is presented. First, a systematic framework for treatment of sheet velocities of the form U(x)=Cxm is provided. By means of an exact similarity transformation, the non-linear boundary layer momentum equation transforms into an ordinary differential equation with m and the power-law index n as the only parameters. Earlier investigations of a continuously moving surface (m=0) and a linearly stretched sheet (m=1) are recovered as special cases.For the particular parameter value m=1, i.e. linear stretching, numerical solutions covering the parameter range 0.1n2.0 are presented. Particular attention is paid to the most shear-thinning fluids, which exhibit a challenging two-layer structure. Contrary to earlier observations which showed a monotonic decrease of the sheet velocity gradient -f(0) with n, the present results exhibit a local minimum of -f(0) close to n=1.77. Finally, a series expansion in (n-1) is proved to give good estimates of -f(0) both for shear-thinning and shear-thickening fluids.  相似文献   

5.
The finite element scheme developed by Nickell, Tanner and Caswell is used to compute the entry and exit losses for creeping flow of power-law fluids in a capillary rheometer. The predicted entry losses for a Newtonian fluid agree well with available experimental and theoretical results. The entry losses for inelastic power-law fluids increased with decreasing flow behaviour index and show an increasing deviation from available upper bound results as the flow behaviour index in the power-law decreases.The exit losses are found to be finite for inelastic power-law fluids and increase as the flow behaviour index decreases. The predicted die swell for Newtonian fluids agrees well with the available experimental data while the influence of shear thinning is to reduce the die swell.The end correction which is the sum of the entry and exit losses relative to twice the viscometric wall shear stress varies from 0.834 for n = 1 to 2.917 for n = 1/6. This figure reaches a very high value as n tends to zero. The experimental variation in the Couette correction factor in capillary rheometry is explained in terms of the shear thinning characteristics of the fluid. It is concluded that the exit flow is not viscometric, contrary to a common assumption.  相似文献   

6.
Steady two-dimensional stagnation-point flow of an electrically conducting power-law fluid over a stretching surface is investigated when the surface is stretched in its own plane with a velocity proportional to the distance from the stagnation-point. We have discussed the uniqueness of the solution except when the ratio of free stream velocity and stretching velocity is equal to 1. The effect of magnetic field on the flow characteristic is explored numerically and it is concluded that the velocity at a point decreases/increases with increase in the magnetic field when the free stream velocity is less/greater than the stretching velocity. It is further observed that for a given value of magnetic parameter M, the dimensionless shear stress coefficient |F(0)| increases with increase in power-law index n when the value of the ratio of free stream velocity and stretching velocity is close to 1 but not equal to 1. But when the value of this ratio further differs from 1, the variation of |F(0)| with n is non-monotonic.  相似文献   

7.
Numerical simulations have been undertaken for the benchmark problem of annular extrudate swell present in pipe extrusion and parison formation in blow molding. The finite element method (FEM) is used to provide numerical results for different inner/outer diameter ratios κ under steady-state conditions. The Herschel-Bulkley model of viscoplasticity is used with the Papanastasiou regularization, which reduces with appropriate parameter choices to the Bingham–Papanastasiou, power-law and Newtonian models. The present results provide the shape of the extrudate, and in particular the thickness and diameter swells, as a function of the dimensionless power-law index (in the case of pseudoplasticity) and the dimensionless yield stress (in the case of viscoplasticity). The pressures from the simulations have been used to compute the excess pressure losses in the system (exit correction). While shear-thinning leads to reduced swelling relative to the Newtonian values for all κ-values, the opposite is true for shear-thickening fluids, which exhibit considerable swelling. Viscoplasticity leads to decreased extrudate swell as the dimensionless yield stress goes from zero (Newtonian behaviour) to an asymptotic value of fully plastic behaviour. The exit correction decreases to zero with a decrease in the power-law index to zero and an increase in the dimensionless yield stress to its asymptotic limit. However, the decrease is not monotonic: for power-law fluids it has maxima in the range of power-law indices between 0.8 and 0.6, while for viscoplastic fluids it has maxima around Bingham number values of 5.  相似文献   

8.
A one layer model of laminar non-Newtonian fluids (Ostwald-de Waele model) past a semi-infinite flat plate is revisited. The stretching and the suction/injection velocities are assumed to be proportional to x1/(1−2n) and x−1, respectively, where n is the power-law index which is taken in the interval . It is shown that the boundary-layer equations display both similarity and pseudosimilarity reductions according to a parameter γ, which can be identified as suction/injection velocity. Interestingly, it is found that there is a unique similarity solution, which is given in a closed form, if and only if γ=0 (impermeable surface). For γ≠0 (permeable surface) we obtain a unique pseudosimilarity solution for any 0≠γ≥−((n+1)/3n(1−2n))n/(n+1). Moreover, we explicitly show that any pseudosimilarity solution exhibits similarity behavior and it is, in fact, similarity solution to a modified boundary-layer problem for an impermeable surface. In addition, the exact similarity solution of the original boundary-layer problem is used, via suitable transverse translations, to construct new explicit solutions describing boundary-layer flows induced by permeable surfaces.  相似文献   

9.
A non-similar boundary layer analysis is presented to study the flow, heat and mass transfer characteristics of non-Darcian mixed convection of a non-Newtonian fluid from a vertical isothermal plate embedded in a homogeneous porous medium with the effect of Soret and Dufour and in the presence of either surface injection or suction. The value of the mixed-convection parameter lies between 0 and 1. In addition, the power-law model is used for non-Newtonian fluids with exponent n < 1 for pseudoplastics n = 1 for Newtonian fluids and n > 1 for dilatant fluids. Furthermore, the coordinates and dependent variables are transformed to yield computationally efficient numerical solutions that are valid over the entire range of mixed convection, from the pure forced-convection limit to the pure free-convection limit, and the whole domain of non-Newtonian fluids, from pseudoplastics to dilatant fluids. The numerical solution of the problem is derived using a Runge–Kutta integration scheme with Newton–Raphson shooting technique. Distributions for velocity, temperature and concentration, as well as for the rate of wall heat and mass transfer, have been obtained and discussed for various physical parametric values.  相似文献   

10.
Non-Darcy mixed convection in a porous medium from horizontal surfaces with variable surface heat flux of the power-law distribution is analyzed. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ζ f =Ra* x /Pe2 x is found to characterize the effect of buoyancy forces on the forced convection with K U /ν characterizing the effect of inertia resistance. The second region covers the natural convection dominated regime where the dimensionless parameter ζ n =Pe x /Ra*1/2 x is found to characterize the effect of the forced flow on the natural convection, with (K U /ν)Ra*1/2 x /Pe x characterizing the effect of inertia resistance. To obtain the solution that covers the entire mixed convection regime the solution of the first regime is carried out for ζ f =0, the pure forced convection limit, to ζ f =1 and the solution of the second is carried out for ζ n =0, the pure natural convection limit, to ζ n =1. The two solutions meet and match at ζ f n =1, and R * h =G * h . Also a non-Darcy model was used to analyze mixed convection in a porous medium from horizontal surfaces with variable wall temperature of the power-law form. The entire mixed convection regime is divided into two regions. The first region covers the forced convection dominated regime where the dimensionless parameter ξ f =Ra x /Pe x 3/2 is found to measure the buoyancy effects on mixed convection with Da x Pe x /ɛ as the wall effects. The second region covers the natural convection dominated region where ξ n =Pe x /Ra x 2/3 is found to measure the force effects on mixed convection with Da x Ra x 2/3/ɛ as the wall effects. Numerical results for different inertia, wall, variable surface heat flux and variable wall temperature exponents are presented. Received on 8 July 1996  相似文献   

11.
Hydrodynamic properties of squirmer swimming in power-law fluid near a wall considering the interaction between squirmer and wall are numerically studied with an immersed boundary-lattice Boltzmann method. The power-law index, Reynolds number, initial orientation angle of squirmer, and initial distance of squirmer from the wall are all taken into account to investigate the swimming characteristics for pusher (β?<?0), neutral squirmer (β?=?0), and puller (β?>?0) (three kinds of swimmer types) near the no-slip boundary. Four new kinds of swimming modes are found. Results show that, for the pushers and pullers, the wall displays an increasing attraction with increasing power-law index n, which differs from the neutral squirmer who always departs from the wall after the first collision with the wall. Both the initial orientation angle and initial distance from the wall only affect the moving situations rather than the moving modes of the squirmers. However, the squirmers depart from the wall as the Reynolds number increases and chaotic orbits appear for some squirmers at Re?=?5. Several typical flow fields are analyzed and the power consumption and torque for different kinds of flows are also studied. It is found that, as the absolute value of β increases, the power consumption generally increases in shear-thinning (n?=?0.4), Newtonian (n?=?1), and shear-thickening (n?=?1.6) fluids. Moreover, the pushers (β?<?0) and the pullers (β?>?0) expend almost the same power if the absolute value of β remains the same. In addition, the power consumption of the squirmers is highly dependent on the power-law index n.  相似文献   

12.
The steady forced convection flow of a power-law fluid over a horizontal plate embedded in a saturated Darcy-Brinkman porous medium is considered. The flow is driven by a constant pressure gradient. In addition to the convective inertia, also the “porous Forchheimer inertia” effects are taken into account. The pertinent boundary value problem is investigated analytically, as well as numerically by a finite difference method. It is found that far away from the leading edge, the velocity boundary layer always approaches an asymptotic state with identically vanishing transverse component. This holds for pseudoplastic (0 < n < 1), Newtonian (n = 1), and dilatant (n > 1) fluids as well. The asymptotic solution is given for several particular values of the power-law index n in an exact analytical form. The main flow characteristics of physical and engineering interest are discussed in the paper in some detail.  相似文献   

13.
A detailed comparison between the lattice Boltzmann method and the finite element method is presented for an incompressible steady laminar flow and heat transfer of a power-law fluid past a square cylinder between two parallel plates. Computations are performed for three different blockage ratios (ratios of the square side length to the channel width) and different values of the power-law index n covering both pseudo-plastic fluids (n < 1) and dilatant fluids (n > 1). The methodology is validated against the exact solution. The local and averaged Nusselt numbers are also presented. The results show that the relatively simple lattice Boltzmann method is a good alternative to the finite element method for analyzing non-Newtonian fluids.  相似文献   

14.
In this work, the continuity and momentum equations have been solved numerically to investigate the flow of power-law fluids over a rotating cylinder. In particular, consideration has been given to the prediction of drag and lift coefficients as functions of the pertinent governing dimensionless parameters, namely, power-law index (1  n  0.2), dimensionless rotational velocity (0  α  6) and the Reynolds number (0.1  Re  40). Over the range of Reynolds number, the flow is known to be steady. Detailed streamline and vorticity contours adjacent to the rotating cylinder and surface pressure profiles provide further insights into the nature of flow. Finally, the paper is concluded by comparing the present numerical results with the scant experimental data on velocity profiles in the vicinity of a rotating cylinder available in the literature. The correspondence is seen to be excellent for Newtonian and inelastic fluids.  相似文献   

15.
A model is developed for the study of mixed- convection film condensation from downward flowing vapors onto a sphere with variable wall temperature. The model combined natural convection dominated and forced convection dominated film condensation, concerning effects of pressure gradient (P), interfacial vapor shear drag and non-uniform wall temperature variation (A), has been investigated and solved numerically. The effect of pressure gradient on the dimensionless mean heat transfer, NuˉRe−1/2 will remain almost uniform with increasing P until for various corresponding available values of F. Meanwhile, the dimensionless mean heat transfer, NuˉRe−1/2 is increasing significantly with F for its corresponding available values of P. Although the non-uniform wall temperature variation has an appreciable influence on the local film flow and heat transfer; however, the dependence of mean heat transfer on A can be almost negligible. Received on 10 October 1996  相似文献   

16.
Nucleate pool boiling experiments for binary mixtures, which are consisted of R11 and R113, were performed with constant wall temperature condition. Results for binary mixtures were also compared with pure fluids. A microscale heater array and Wheatstone bridge circuits were used to maintain the constant temperature of the heating surface and to obtain heat flow rate measurements with high temporal and spatial resolutions. Bubble growth images were captured using a high-speed CCD camera synchronized with the heat flow rate measurements.The departure time for binary mixtures was longer than that for pure fluids, and binary mixtures had a higher onset of nucleate boiling (ONB) temperature than pure fluids. In the asymptotic growth region, the bubble growth rate was proportional to a value between t1/6 and t1/4. The bubble growth behavior was analyzed to permit comparisons with binary mixtures and pure fluids at the same scale using dimensionless parameters. There was no discernible difference in the bubble growth behavior between binary mixtures and pure fluids for a given ONB temperature. And the departure radius and time were well predicted within a ±30% error.The minimum heat transfer coefficient of binary mixtures occurred near the maximum |yx| value, and the average required heat flux during bubble growth did not depend on the mass fraction of R11 as more volatile component in binary mixtures. Finally, the results showed that for binary mixtures, a higher ONB temperature had the greatest effect on reducing the heat transfer coefficient.  相似文献   

17.
This paper is concerned with the dynamics for the Navier-Stokes equations for a polytropic viscous heat-conductive ideal gas in bounded annular domains Ω n in ? n (n= 2, 3). One of the important features of this problem is that the metric spaces H (1) and H (2) we work with are two incomplete metric spaces, as can be seen from the constraints θ >0 and u> 0, withθ and u being absolute temperature and specific volume respectively. For any constants δ1, δ2, δ3, δ4, δ5 satisfying certain conditions, two sequences of closed subspaces H ( i ) δ?H ( i ) (i= 1,2) are found, and the existence of two (maximal) universal attractors in H (1) δ and H (2) δ is proved.  相似文献   

18.
Over a range of 102<Re*<5800, 6.5<Pr*<79, and 0.6<n<1, circumferential wall temperatures for water and aqueous polymer (purely viscous) solution flows over a smooth cylinder were measured experimentally. The cylinder was heated by passing direct electric current through it. Aqueous solutions of Carbopol 934 and EZ1 were used as power-law non-Newtonian fluids. The peripherally averaged heat transfer coefficient for purely viscous non-Newtonian fluids, at any fixed flow rate, decreases with increasing polymer concentration. A new correlation is proposed for predicting the peripherally averaged Nusselt number for power-law fluid flows over a heated cylinder in cross flow.  相似文献   

19.
Four constant viscosity, highly elastic fluids of different viscosity and elasticity levels are presented. The viscosity ranges from 4 × 10?3 to 5.0 Pa s and the Maxwell relaxation time varies from 0.09 to 4.5 s. The steady and dynamic shear properties are determined. These fluids comply with the requirements of the simple fluid theory except for theG′ andN 1/2 data where a slight deviation is observed. The results suggest the possibility of preparing a wide range of constant viscosity elastic fluids with specific values of viscosity and relaxation time by manipulating polymer molecular parameters as well as polymer concentration, solvent viscosity and salt addition. The effects of each of these parameters on the rheological behaviour are examined.  相似文献   

20.
In this paper the problem of momentum and heat transfer in a thin liquid film of power-law fluid on an unsteady stretching surface has been studied. Numerical solutions are obtained for some representative values of the unsteadiness parameter S and the power-law index n for a wide range of the generalized Prandtl number, 0.001 ≤ Pr ≤ 1000. Typical temperature and velocity profiles, the dimensionless film thickness, free-surface temperature, and the surface heat fluxes are presented at selected controlling parameters. The results show that increasing the value of n tends to increase the boundary-layer thickness and broadens the temperature distributions. The free-surface temperature of a shear thinning fluid is larger than that of a Newtonian fluid, but the opposite trend is true for a shear thickening fluid. For small generalized Prandtl numbers, the surface heat flux increases with a decrease in n, but the impacts of n on the heat transfer diminish for Pr greater than a moderate value (approximately 1 ≤ Pr ≤ 10, depending on the magnitude of S).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号