共查询到20条相似文献,搜索用时 52 毫秒
1.
An Efficient Scheme for Implementing an N-Qubit Toffoli Gate with Superconducting Quantum-Interference Devices in Cavity QED 下载免费PDF全文
An alternative approach is proposed to realize an n-qubit Toffoli gate with superconducting quantum-interference devices (SQUIDs) in cavity quantum electrodynamics (QED). In the proposal, we represent two logical gates of a qubit with the two lowest levels of a SQUID while a higher-energy intermediate level of each SQUID is utilized for the gate manipulation. During the operating process, because the cavity field is always in vacuum state, the requirement on the cavity is greatly loosened and there is no transfer of quantum information between the cavity and SQUIDs. 相似文献
2.
Realization of Greenberg-Horne-Zeilinger (GHZ) and W Entangled States with Multiple Superconducting Quantum-Interference Device Qubits in Cavity QED 下载免费PDF全文
An alternative scheme is proposed for generating the Greenberg-Horne-Zeilinger (GHZ) and W types of the entangled states with multiple superconducting quantum-interference device (SQUID) qubits in a single-mode microwave cavity field. In this scheme, there is no transfer of quantum information between the SQUIDs and the cavity, the cavity is always in the vacuum and thus the requirement on the quality of cavity is greatly loosened. In addition, during the process of the generation of the W entangled state, the present method does not involve a real excitation of intermediate levels. Thus, decoherence due to energy relaxation of intermediate levels is minimized. 相似文献
3.
Implementation of a Controlled-NOT Gate Using Superconducting Quantum Interference Devices 下载免费PDF全文
A scheme is proposed for implementing a controlled-NOT gate via superconducting quantum interference device (SQUID) in cavity-QED. The controlled-NOT gate can be achieved by coupling the SQUID to a single-mode microwave cavity field or classical microwave pluses. The scheme may be experimentally realizable. 相似文献
4.
We propose a method to prepare multipartite entangled states such as cluster states and graph states based on the cavity input-output process and single photon measurement. Two quantum gates, a controlled phase gate and a fusion gate between two atoms trapped in respective cavities, are proposed to prepare atomic cluster states and graph states with one and two dimensions. We also introduce a scheme that can generate an arbitrary multipartite photon duster state which uses two coherent states as a qubit basis. 相似文献
5.
We propose a scheme for preparing multiple-photon GHZ state via cavity-assisted interaction. There are n-pair single-photon pulses successively injected and reflected from two sides of the cavity, which traps one atom. After the atomic state is measured, a 2n-photon GHZ state is produced. In the ideal case, the successful probability of the scheme is close to unity. 相似文献
6.
We propose a scheme for teleportation of an unknown two-qubit entangled state via trapped ions. In this scheme, we use the GHZ state as a quantum channel and the success probability can reach 1. The distinct advantage of our scheme is insensitive to the heating of the vibrational mode. In addition, Bell-state measurement is not required. 相似文献
7.
We propose an optical scheme to generate cluster states of atomic qubits, with each trapped in separate optical cavity, via atom-cavity-laser interaction. The quantum information of each qubit is encoded on the degenerate ground states of the atom, hence the entanglement between them is relatively stable against spontaneous emission. A single-photon source and two classical fields are employed in the present scheme. By controlling the sequence and time of atom-cavity-laser interaction, we show that the atomic cluster states can be produced deterministically. 相似文献
8.
Based on superconducting charge qubits (SCCQs) coupled to a single-mode microwave cavity, we propose a scheme for generating charge cluster states. For all SCCQs, the controlled gate voltages are all in their degeneracy points, the quantum information is encoded in two logic states of charge basis. The generation of the multi-qubit cluster state can be achieved step by step on a pair of nearest-neighbor qubits. Considering effective long-rang coupling, we provide an efficient way to one-step generating of a highly entangled cluster state, in which the qubit-qubit coupling is mediated by the cavity mode. Our quantum operations are insensitive to the initial state of the cavity mode by removing the influence of the cavity mode via the periodical evolution of the system. Thus, our operation may be against the decoherence from the cavity. 相似文献
9.
We propose a scheme for implementing a measurement of GHZ entanglement for a multipartite system via cavity QED. In the scheme the atoms interact simultaneously with a highly detuned cavity mode with the assistant of a classical field. The scheme is insensitive to the cavity decay and the thermal field. A set of GHZ states can be exactly distinguished via detecting atomic state in a simple way. 相似文献
10.
We propose a scheme to generate the multi-photon cluster states via the cavity input-output process and the single-bit rotations. The method can be generalized to construct a series of multi-photon graph states, and the successful probability is close to unity in the ideal condition. 相似文献
11.
A quantum logic network is constructed to simulate a cloning machine which copies states near a given one. Meanwhile, a scheme for implementing this cloning network based on the technique of cavity quantum electrodynamics (QED) is presented. It is easy to implement this network of cloning machine in the framework of cavity QED and feasible in the experiment. 相似文献
12.
We propose a scheme for generating entangled squeezed vacuum states of electromagnetical fields. The scheme is based on cavity QED. In this scheme, an atom interacts, successively, with a classical field, two quantum cavity fields, and another classical field. By detecting the final states of the atom, the two quantum cavity fields will be projected to an entangled state. 相似文献
13.
Scheme for Concentration of Unknown Greeberger-Horne-Zeilinger Entangled States via Cavity Decay 下载免费PDF全文
We present a scheme for entanglement concentration of an unknown atomic non-maximally entangled GHZ state via cavity decay. In the scheme, the atom trapped in a cavity is manipulated by laser field, so the maximally entangled GHZ state can be obtained by performing certain operation, which can be realized by illuminating the atom in a cavity. Our method is robust against spontaneous atomic decay. 相似文献
14.
Realization of Arbitrary Positive-Operator-Value Measurement of Single Atomic Qubit via Cavity QED 下载免费PDF全文
Positive-operator-value measurement (POVM) is the most general class of quantum measurement. We propose a scheme to deterministically implement arbitrary POVMs of single atomic qubit via cavity QED catalysed by only one ancilla atomic qubit. By appropriately entangling two atomic qubits and sequentially measuring the ancilla qubit, any POVM can be implemented step by step. As an application of our scheme, the realization of a specific POVM for optimal unambiguous discrimination (OUD) between two nonorthogonal states is given. 相似文献
15.
We propose a new scheme to achieve the tripartite entanglement based on the standard criteria [Phys. Rev. A 67(2003) 052315] in a inverse-tripod atomic system. In our scheme, the atomic coherence is introduced by two microwave fields which drive the upper three levels of atom. By numerically simulating the dynamics of system, we investigate the generation and evolution of entanglement in the presence of atom and cavity decay. As a result, the present research provides an efficient approach to achieve fully tripartite entanglement with different frequencies and initial states for each entangled mode, which may have impact on the progress of multicolored multi-notes quantum information networks. 相似文献
16.
17.
Zhi-Bo Feng 《Physics letters. A》2008,372(21):3773-3777
This Letter proposes a theoretical scheme for scalable quantum computing with charge-phase qubits inside a common cavity. Individually addressing the applied gate pulses, we obtain the switchable interqubit couplings mediated by the cavity mode, from which a universal set of logic gates can be constructed. In our scheme the interqubit couplings are completely feasible to perform conditional gates, and the classical microwaves cause negligible leakage errors. 相似文献
18.
Continuous Variable Entanglement and Violation of Bell Inequality for Two Modes in a Three-Level Cascade Atomic System 下载免费PDF全文
Continuous variable entanglement and violation of Bell inequality for two modes are investigated in a three-level cascade atomic system. Entanglement of the system is demonstrated according to the entanglement criterion [Phys. Rev. Lett. 84 (2000)2722]. Violation of Bell inequality is studied within the framework of a quantum theory of multiwave mixing. It is shown that there are some states that are entangled but do not violate the Bell inequality. 相似文献
19.
We propose to generate two-mode squeezed vacuum motional state of an intracavity trapped ion by taking the advantage of the dissipation of the cavity mode. At the first step, the steady and pure two-mode motional entanglement between two motional degrees of the cold ion is obtained by engineering the couplings of both the motional modes of the ion to the cavity field. Based on the first step, a two-mode squeezed vacuum motional state is then generated by manipulating the phases of the external laser pulses incident on the ion. 相似文献
20.
Eyob Alebachew 《Optics Communications》2007,280(1):133-141
We consider a non-degenerate three-level cascade laser coupled to a two-mode squeezed vacuum reservoir via the lossy single-port mirror. Applying the pertinent master equation, we analyze the effects of the injected squeezed light on the quadrature squeezing, entanglement and normalized intensity difference fluctuations. We show that the injected squeezed light considerably enhances the degree of squeezing and entanglement in the two-mode light for certain initial conditions. Moreover, the injected squeezed light increases the mean photon number where the squeezing and entanglement is significant. We also show that the presence of the injected squeezed light greatly reduces the noise in the intensity difference. 相似文献