首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Usually, before enzyme was immobilized onto support materials, these support materials had been activated through some activators, such as glutaraldehyde. The glucoamylase has been covalently immobilized onto several different support materials through the formation of Schiff base1-5. In this work, the glucoamylase was covalently (in the form of σ-bond) immobilized onto the porous polymer supports containing cyclic carbonate without activation. The relationship between the activity of the …  相似文献   

2.
Glucoamylase (EC 3.2.1.3) was immobilized to alkylamine porous glass with glutaraldehyde. The choice and pretreatment of carrier and conditions for immobilization have been investigated. The immobilized enzyme contained about 4.0–8.0% protein and its activity was about 1000–1700 U/g. Some characteristics of the immobilized enzyme and the native enzyme have been comparatively investigated. The optimum temperature and the pH stability of the preparation were almost identical to the native one. However, the optimum pH of bound glucoamylase shifted 1.3 pH units toward the alkaline side compared to the native one. The Michaelis constant(K m ) of bound glucoamylase for soluble starch was about four times higher than that of the native enzyme, whileK m values for maltose approached those of the native material. At 45‡C the half-life of IMG was 104 days under operational conditions. Alkaline protease, α-amylase, asparaginase, and penicillin acylase were also chemically coupled to porous glass by the same method and high relative activities were obtained.  相似文献   

3.
The covalent immobilization of glucoamylase on new epoxide-, isocyanate-, acid chloride-, and carboxylic acid-activated plastic supports shows the viability of such supports for immobilizing enzymes (especially those reacting with 1,6-diaminohexane and glutaraldehyde) for producing side arms. The operational stability of immobilized glucoamylase could be extended by crosslinking the enzyme, by increasing the substrate concentration, or by extending the support’s side arm. The pH curves for the immobilized enzyme were in general not found to be shifted from the pH optimum of the soluble enzyme. However, the immobilized enzyme’s temperature activity profiles were shifted to a lower temperature range when compared to the soluble enzyme. The immobilized glucoamylase Michaelis constants increased, and the maximum rates and specific activities decreased with respect to the soluble enzyme kinetic parameters.  相似文献   

4.
酸性接枝淀粉固定化糖化酶及稳定性研究   总被引:3,自引:0,他引:3  
糖化酶(EC.3.2.1.3,GA)是工业上应用规模最大的3种酶制剂之一.目前,工业生产中大多采用游离GA,这给产物的分离和纯化带来诸多不便.因此,采用固定化糖化酶(IGA)是酶制剂工业发展的必然趋势.  相似文献   

5.
The enzyme AMP-deaminase was entrapped in an acrylamide-glycidylmethacrylate copolymer. No leakage of AMP-deaminase was observed from the copolymer. The optimum pH of native AMP-deaminase was 5.6. The pH was displaced to 5.0 with immobilization in the copolymer. The immobilized AMP-deaminase column maintained more than 95% of initial activity after 10 days of operation.  相似文献   

6.
ρ-Benzoquinone-activated alginate beads were presented as a new carrier for affinity covalent immobilization of glucoamylase enzyme. Evidences of alginate modification were extracted from FT-IR and thermal gravimetric analysis and supported by morphological changes recognized through SEM examination. Factors affecting the modification process such as ρ-benzoquinone (PBQ) concentration, reaction time, reaction temperature, reaction pH and finally alginate concentration, have been studied. Its influence on the amount of coupled PBQ was consequently correlated to the changes of the catalytic activity and the retained activity of immobilized enzyme, the main parameters judging the success of the immobilization process. The immobilized glucoamylase was found kept almost 80% of its native activity giving proof of non-significant substrate, starch, diffusion limitation. The proposed affinity covalent immobilizing technique would rank among the potential strategies for efficient immobilization of glucoamylase enzyme.  相似文献   

7.
A novel affinity covalent immobilization technique of glucoamylase enzyme onto ρ-benzoquinone-activated alginate beads was presented and compared with traditional entrapment one. Factors affecting the immobilization process such as enzyme concentration, alginate concentration, calcium chloride concentration, cross-linking time, and temperature were studied. No shift in the optimum temperature and pH of immobilized enzymes was observed. In addition, K m values of free and entrapped glucoamylase were found to be almost identical, while the covalently immobilized enzyme shows the lowest affinity for substrate. In accordance, V m value of covalently immobilized enzyme was found lowest among free and immobilized counter parts. On the other hand, the retained activity of covalently immobilized glucoamylase has been improved and was found higher than that of entrapped one. Finally, the industrial applicability of covalently immobilized glucoamylase has been investigated through monitoring both shelf and operational stability characters. The covalently immobilized enzyme kept its activity over 36 days of shelf storage and after 30 repeated use runs. Drying the catalytic beads greatly reduced its activity in the beginning but recovered its lost part during use. In general, the newly developed affinity covalent immobilization technique of glucoamylase onto ρ-benzoquinone-activated alginate carrier is simple yet effective and could be used for the immobilization of some other enzymes especially amylases.  相似文献   

8.
Summary The enzymes a-amylase, invertase and glucoamylase were immobilized on acid activated montmorillonite using two techniques, viz. adsorption and covalent binding, and their activities were tested in a batch and packed-bed reactor and were compared. The packed-bed reactor showed an improved performance for all immobilized enzymes, which was attributed to lowering of diffusional restrictions to mass transfer. Lower activity in case of batch reactor for immobilized invertase was due to a combined effect of loss of native conformation of enzyme on account of immobilization and mass transfer resistances due to improper diffusion of substrate to the active site of enzyme. For immobilized glucoamylase, the packed-bed reactor demonstrated exceptionally high activity that was very close to the free enzyme. Covalently bound glucoamylase showed higher activity than the free enzyme.  相似文献   

9.
Papain (EC 3.4.22.2) has been chemically modified using two novel reagents including different anhydrides of 1,2,4-benzenetricarboxylic and pyromellitic acids. Then, the modified papain was immobilized on the activated cotton fabric by a two-step method. The number of free amino groups in the modified protein was investigated through the 2,4,6-trinitrobenzenesulfonic acid method. Energy dispersive spectrometer was used to characterize papain immobilization. Some parameters of both modified and native papain immobilized on cotton fabric, such as optimum temperature, optimum pH, and the stabilities for reservation in various detergents were studied and compared. The resultant papain had its optimum pH shifted from 6.0 to 9.0. Compared with immobilized native papain, the thermal stability and the resistance to alkali and washing detergent of immobilized modified enzyme were improved considerably. When the concentration of detergent was 20 mg/ml, the activity of the immobilized pyromellitic papain retained about 40% of its original activity, whereas the native papain was almost inhibited. This work demonstrated that the cotton fabric immobilized modified papain has potential applications in the functional textiles field.  相似文献   

10.
The activity of immobilized enzymes decays with time, and the capacity of a carrier will decrease with repeated regeneration. Relations between production cost and these factors are shown, and demonstrated with data on glucoamylase immobilized on porous glass. Optimum design calls for very low temperature and for cycle times several years long. A practical design may be made by limiting cycle time to an upper limit and calculating the temperature for which this time is optimum. In this case, reagents and carrier are the most important costs, even with an expensive enzyme.  相似文献   

11.
本文以苯氨基磺酸型多孔聚苯乙烯为载体,重氮化活化其苯氨基与糖化酶上的氨基反应。在固定化酶过程中,随反应时间的延长,不但固定化酶总活力增加,而且其比活和热稳定性也随之升高,最终可得活力为20000U/g干胶,比活为500的高活力固定化酶,该固定化酶在pH4.5,60℃无底物下保温,其半寿期是天然酶的5倍。以麦芽糖,糊精(分子量为1500)和可溶性淀粉为底物测定该固定化酶活力表明:对某种孔度一定的载体  相似文献   

12.
本文以交联聚丙烯酰胺对尿酶包埋进行了研究,制备出了球形固定化尿酶,其含酶量高(1份酶对1份聚合物),相对活性为50%左右,对尿素的分解活性:120m/ml(固定化尿酶,37℃,2小时),提高了稳定性,在4℃下,66天后活性降低8%,106天后活性降低22%,37℃下11天后活性降低18%,并且不泄漏酶。基于以上特点,该固定化尿酶为吸附型人工肾提供了一个较合适的活性材料。  相似文献   

13.
The preparations and properties of 5′-phosphodiesterase and 5′-AMP-deaminase immobilized on porous ceramics by covalent binding and the production of 5′mononucleotides from RNA using these immobilized enzymes are described. Comparison tests for the properties of both immobilized and native enzymes were carried out. It was found that the pH optima of these immobilized enzymes were shifted toward the acidic side, and their practically operable pH regions were much more broadened. In such acidic pH regions, these immobilized enzymes also showed more excellent heat stabilities. These special characteristics of the immobilized enzymes were quite satisfactory for eliminating possible microbial contamination during the long-term operation of these immobilized enzyme systems. In continuous-column operations, more than 85% hydrolysis of RNA and complete conversion of 5′-AMP to 5′-IMP were maintained for more than 23 days when a 4% RNA solution was charged as the substrate.  相似文献   

14.
New polymer/silica gel hybrid supports were prepared by coating high surface area of silica gel with modified acrylonitrile copolymer. The concentrations of the modifying agent (NaOH) and the modified polymer were varied. GOD was covalently immobilized on these hybrid supports and the relative activity and the amount of bound protein were determined. The highest relative activity and sufficient amount of bound protein of the immobilized GOD were achieved in 10% NaOH and 2% solution of modified acrylonitrile copolymer. The influence of glutaraldehyde concentration and the storage time on enzyme efficiency were examined. Glutaraldehyde concentration of 0.5% is optimal for the immobilized GOD. It was shown that the covalently bound enzyme (using 0.5% glutaraldehyde) had higher relative activity than the activity of the adsorbed enzyme. Covalently immobilized GOD with 0.5% glutaraldehyde was more stable for four months in comparison with the one immobilized on pure silica gel, hybrid support with 10% glutaraldehyde and the free enzyme. The effect of the pore size on the enzyme efficiency was studied on four types of silica gel with different pore size. Silica with large pores (CPC-Silica carrier, 375 A) presented higher relative activity than those with smaller pore size (Silica gel with 4, 40 and 100 A). The amount of bound protein was also reduced with decreasing the pore size. The effect of particle size was studied and it was found out that the smaller the particle size was, the greater the activity and the amount of immobilized enzyme were. The obtained results proved that these new polymer/silica gel hybrid supports were suitable for GOD immobilization.  相似文献   

15.
壳聚糖固定化胰蛋白酶的研究   总被引:14,自引:0,他引:14  
以壳聚糖为载体,戊二醛为交联剂,采用两种方法制备了固定化胰蛋白酶。考察了固定化反应中pH值,戊二醛的浓度,以及给酶量对固定化胰蛋白酶活力的影响,并研究了这两种固定化胰蛋白酶的性质。实验结果表明,以戊二醛预交联的网状壳聚糖为载体制备的固定化胰蛋白酶具有更加优良的性能,在最佳固定化反应条件下,酶的活性加收率可达56%。此固定化胰蛋白酶的最适pH为7.0-8.5,最适温度为60℃,Km值为2.52mol/L,固定化胰蛋白酶表现出较好的热稳定性,pH贮存稳定性,以及在乙醇水溶液中的稳定性。  相似文献   

16.
Pig pancreas carboxypeptidase B has been immobilized by covalent attachment to a polyacrylamide-type bead support possessing carboxylic functional groups activated by water-soluble carbodiimide. The optimum conditions of immobilization were determined. The activation of the support and the coupling reaction were performed in 0.1 M sodium citrate/sodium phosphate buffer (pH 4.5) using a support-carbodiimide-enzyme weight ratio 4:8:1 at 0-4 degrees C. Under such conditions, the highest activity achieved was 6700 U/g solid. The catalytic properties and stability of immobilized carboxypeptidase B were studied and compared with the corresponding properties of the soluble enzyme. The specific activity of the immobilized enzyme calculated on bound protein basis was about 70% of that of soluble enzyme. The optimum pH for the catalytic activity of the immobilized carboxypeptidase B was practically identical with that of soluble enzyme (pH 7.6-7.7). The apparent optimum temperature of the immobilized carboxypeptidase B was about 7 degrees C higher than that of the soluble enzyme. With hippuryl-L-arginine as substrate, Kmapp value of the immobilized enzyme was tenfold higher than the Km value of the soluble enzyme. The conformational stability of the enzyme was markedly enhanced by the strongly hydrophylic microenvironment in a wide temperature and pH range. The immobilized carboxypeptidase B was used for stepwise digestion of cytochrome C.  相似文献   

17.
The covalent immobilization of trypsin onto poly[(methyl methacrylate)-co-(ethyl acrylate)-co-(acrylic acid)] latex particles, produced by a soap-free emulsion polymerization technique, was carried out using the carbodiimide method. The catalytic properties and kinetic parameters, as well as the stability of the immobilized enzyme were compared to those of the free enzyme. Results showed that the optimum temperature and pH for the immobilized trypsin in the hydrolysis of casein were 55 degrees C and 8.5, both of which were higher than that of the free form. It was found that K(m) (Michaelis constant) was 45.7 mg . ml(-1) and V(max) (maximal reaction rate) was 793.0 microg . min(-1) for immobilized trypsin, compared to a K(m) of 30.0 mg . ml(-1) and a V(max) of 5 467.5 microg . min(-1) for free trypsin. The immobilized trypsin exhibited much better thermal and chemical stabilities than its free counterpart and maintained over 63% of its initial activity after reusing ten times.  相似文献   

18.
Immobilization of cellulase in nanofibrous PVA membranes by electrospinning   总被引:6,自引:0,他引:6  
Electrospinning is a nanofiber-forming process by which either polymer solution or melt is charged to high voltages. With high specific surface area and porous structure, electrospun fibrous membranes are excellent candidates for immobilization of enzymes. In this paper, immobilization of cellulase in nanofibrous poly(vinyl alcohol) (PVA) membranes was studied by electrospinning. PVA and cellulase were dissolved together in an acetic acid buffer (pH 4.6) and electrospun into nanofibers with diameter of around 200 nm. The nanofibrous membranes were crosslinked by glutaraldehyde vapor and examined catalytic efficiency for biotransformations. The activity of immobilized cellulase in PVA nanofibers was over 65% of that of the free enzyme. Nanofibers were superior to casting films from the same solution for immobilization of cellulase. The activity of immobilized cellulase descended with ascending in enzyme loading efficiency and crosslinking time, which retained 36% its initial activity after six cycles of reuse.  相似文献   

19.
Temperature dependencies of kinetic and equilibrium parameters of urea hydrolysis catalyzed by native urease and the urease immobilized in a thermosensitive poly-N-isopropylacrylamide gel have been studied. The swelling ratio of the collapsed urease-containing gel is shown to increase in the presence of urea. Below a lower critical solution temperature (LCST) of the polymer, the immobilized u reaseactually has thesame catalytic properties as the native enzyme. At temperatures above LCST, the observed catalytic activity of the immobilized enzyme depends chiefly not only on the thermoreversible matrix state, but also on gel water content.  相似文献   

20.
固定化木瓜蛋白酶的制备和性质研究   总被引:10,自引:0,他引:10  
多孔硅球固定化木瓜蛋白酶具有热增活性 .本文在前文研究的基础上 ,用载体交联法制备了甲壳胺固定化木瓜蛋白酶和纤维素固定化木瓜蛋白酶 .考察了固定化pH值、戊二醛浓度和给酶量对固定化木瓜蛋白酶活力的影响 .研究了固定化木瓜蛋白酶的性质 ,特别是热稳定性和耐热性 ,并与溶液酶和多孔硅球固定化木瓜蛋白酶进行了比较 .所制得的甲壳胺固定化木瓜蛋白酶和纤维素固定化木瓜蛋白酶的最适反应温度均达到了 80℃ ;90℃温育 1h后固定化酶的活力保持在 95 %以上 ;70℃温育处理 5h和 6h后固定化酶的活力也仍能保持在 90 %以上 .固定化木瓜蛋白酶的热稳定性和耐热性得到了显著提高  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号