首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We prove that any linear operator with a kernel in a Gelfand–Shilov space is a composition of two operators with kernels in the same Gelfand–Shilov space. We also give links on numerical approximations for such compositions. We apply these composition rules to establish Schatten–von Neumann properties for such operators.  相似文献   

2.
We prove a priori estimates for a generalised Monge–Ampère PDE with ‘non-constant coefficients’ thus improving a result of Sun in the Kähler case. We apply this result to the deformed Hermitian Yang-Mills (dHYM) equation of Jacob–Yau to obtain an existence result and a priori estimates for some ranges of the phase angle assuming the existence of a subsolution. We then generalise a theorem of Collins–Szèkelyhidi on toric varieties and use it to address a conjecture of Collins–Jacob–Yau.  相似文献   

3.
We study trellises of Reed–Muller codes from first principles. Our approach to local trellis behaviour seems to be new and yields amongst other things another proof of a result of Berger and Be'ery on the state complexity of Reed–Muller codes. We give a general form of a minimal-span generator matrix for the family of Reed–Muller codes with their standard bit-order. We apply this to determining the number of parallel subtrellises in any uniform sectionalisation of a Reed–Muller code and to designing trellises for Reed–Muller codes with more parallel subtrellises than the minimal trellis, but with the same state complexity.  相似文献   

4.
The velocity–vorticity formulation of the 3D Navier–Stokes equations was recently found to give excellent numerical results for flows with strong rotation. In this work, we propose a new regularization of the 3D Navier–Stokes equations, which we call the 3D velocity–vorticity-Voigt (VVV) model, with a Voigt regularization term added to momentum equation in velocity–vorticity form, but with no regularizing term in the vorticity equation. We prove global well-posedness and regularity of this model under periodic boundary conditions. We prove convergence of the model's velocity and vorticity to their counterparts in the 3D Navier–Stokes equations as the Voigt modeling parameter tends to zero. We prove that the curl of the model's velocity converges to the model vorticity (which is solved for directly), as the Voigt modeling parameter tends to zero. Finally, we provide a criterion for finite-time blow-up of the 3D Navier–Stokes equations based on this inviscid regularization.  相似文献   

5.
We propose a simple algebraic method for generating classes of traveling wave solutions for a variety of partial differential equations of current interest in nonlinear science. This procedure applies equally well to equations which may or may not be integrable. We illustrate the method with two distinct classes of models, one with solutions including compactons in a class of models inspired by the Rosenau–Hyman, Rosenau–Pikovsky and Rosenau–Hyman–Staley equations, and the other with solutions including peakons in a system which generalizes the Camassa–Holm, Degasperis–Procesi and Dullin–Gotwald–Holm equations. In both cases, we obtain new classes of solutions not studied before.  相似文献   

6.
We study the initial–boundary value problem for the Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions. We first prove the existence of weak solutions of the linearized equation in an interval with absorbing boundary conditions. Moreover, the weak solution converges to zero exponentially in time. Then we extend the above results to the fully nonlinear Vlasov–Poisson–Fokker–Planck equations in an interval with absorbing boundary conditions; the existence and the longtime behavior of weak solutions. Finally, we prove that the weak solution is actually a classical solution by showing the hypoellipticity of the solution away from the grazing set and the Hölder continuity of the solution up to the grazing set.  相似文献   

7.
We study the effect of directional quenching on patterns formed in simple bistable systems such as the Allen–Cahn and the Cahn–Hilliard equation on the plane. We model directional quenching as an externally triggered change in system parameters, changing the system from monostable to bistable across a trigger line. We are then interested in patterns forming in the bistable region, in particular as the trigger progresses with small speed and increases this bistable region. We find existence and nonexistence results of single interfaces and striped patterns. For zero speed, we find stripes parallel or perpendicular to the trigger line and exclude stripes with an oblique orientation. Single interfaces are always perpendicular to the trigger line. For small positive speed, striped patterns can align perpendicularly. Other orientations are excluded in Allen–Cahn for all nonnegative speeds. Single interfaces for positive trigger speeds are excluded for Cahn–Hilliard and align perpendicularly in Allen–Cahn.  相似文献   

8.
In this paper we consider Runge–Kutta methods for jump–diffusion differential equations. We present a study of their mean-square convergence properties for problems with multiplicative noise. We are concerned with two classes of Runge–Kutta methods. First, we analyse schemes where the drift is approximated by a Runge–Kutta ansatz and the diffusion and jump part by a Maruyama term and second we discuss improved methods where mixed stochastic integrals are incorporated in the approximation of the next time step as well as the stage values of the Runge–Kutta ansatz for the drift. The second class of methods are specifically developed to improve the accuracy behaviour of problems with small noise. We present results showing when the implicit stochastic equations defining the stage values of the Runge–Kutta methods are uniquely solvable. Finally, simulation results illustrate the theoretical findings.  相似文献   

9.
Baker and Norine proved a Riemann–Roch theorem for divisors on undirected graphs. The notions of graph divisor theory are in duality with the notions of the chip-firing game of Björner, Lovász and Shor. We use this connection to prove Riemann–Roch-type results on directed graphs. We give a simple proof for a Riemann–Roch inequality on Eulerian directed graphs, improving a result of Amini and Manjunath. We also study possibilities and impossibilities of Riemann–Roch-type equalities in strongly connected digraphs and give examples. We intend to make the connections of this theory to graph theoretic notions more explicit via using the chip-firing framework.  相似文献   

10.
We present higher-order quadrature rules with end corrections for general Newton–Cotes quadrature rules. The construction is based on the Euler–Maclaurin formula for the trapezoidal rule. We present examples with 6 well-known Newton–Cotes quadrature rules. We analyze modified end corrected quadrature rules, which consist on a simple modification of the Newton–Cotes quadratures with end corrections. Numerical tests and stability estimates show the superiority of the corrected rules based on the trapezoidal and the midpoint rules.  相似文献   

11.
We study the long-time behaviour of solutions of the Vlasov–Poisson–Fokker–Planck equation for initial data small enough and satisfying some suitable integrability conditions. Our analysis relies on the study of the linearized problems with bounded potentials decaying fast enough for large times. We obtain global bounds in time for the fundamental solutions of such problems and their derivatives. This allows to get sharp bounds for the decay of the difference between the solutions of the Vlasov–Poisson–Fokker–Planck equation and the solution of the free equation with the same initial data. Thanks to these bounds, we get an explicit form for the second term in the asymptotic expansion of the solutions for large times. © 1998 B. G. Teubner Stuttgart—John Wiley & Sons, Ltd.  相似文献   

12.
We use the Inverse Scattering Transform machinery to construct multisoliton solutions to the 2-component defocusing nonlinear Schrödinger equation. Such solutions include dark–dark solitons, which have dark solitonic behaviour in both components, as well as dark–bright soliton solutions, with one dark and one bright component. We then derive the explicit expressions of two soliton solutions for all possible cases: two dark–dark solitons, two dark–bright solitons, and one dark–dark and one dark–bright soliton. Finally, we determine the long-time asymptotic behaviours of these solutions, which allows us to obtain explicit expressions for the shifts in the phases and in the soliton centers due to the interactions.  相似文献   

13.
We consider the Cauchy problem for coupled systems of wave and Klein–Gordon equations with quadratic nonlinearity in three space dimensions. We show global existence of small amplitude solutions under certain condition including the null condition on self-interactions between wave equations. Our condition is much weaker than the strong null condition introduced by Georgiev for this kind of coupled system. Consequently our result is applicable to certain physical systems, such as the Dirac–Klein–Gordon equations, the Dirac–Proca equations, and the Klein–Gordon–Zakharov equations.  相似文献   

14.
We investigate linear and weakly nonlinear properties of rotating convection in a sparsely packed Porous medium. We obtain the values of Takens–Bogdanov bifurcation points and co-dimension two bifurcation points by plotting graphs of neutral curves corresponding to stationary and oscillatory convection for different values of physical parameters relevant to rotating convection in a sparsely packed porous medium near a supercritical pitchfork bifurcation. We derive a nonlinear two-dimensional Landau–Ginzburg equation with real coefficients by using Newell–Whitehead method [16]. We investigate the effect of parameter values on the stability mode and show the occurrence of secondary instabilities viz., Eckhaus and Zigzag Instabilities. We study Nusselt number contribution at the onset of stationary convection. We derive two nonlinear one-dimensional coupled Landau–Ginzburg type equations with complex coefficients near the onset of oscillatory convection at a supercritical Hopf bifurcation and discuss the stability regions of standing and travelling waves.  相似文献   

15.
We develop a general technique to prove uniqueness of solutions for Fokker–Planck equations on infinite dimensional spaces. We illustrate this method by implementing it for Fokker–Planck equations in Hilbert spaces with Kolmogorov operators with irregular coefficients and both non-degenerate or degenerate second order part.  相似文献   

16.
We study convergence in variation of probability solutions of nonlinear Fokker–Planck–Kolmogorov equations to stationary solutions. We obtain sufficient conditions for the exponential convergence of solutions to the stationary solution in case of coefficients that can have an arbitrary growth at infinity and depend on the solutions through convolutions with unbounded discontinuous kernels. In addition, we study a more difficult case where the nonlinear equation has several stationary solutions and convergence to a stationary solution depends on initial data. Finally, we obtain sufficient conditions for solvability of nonlinear Fokker–Planck–Kolmogorov equations.  相似文献   

17.
We prove uniform resolvent estimates for semiclassical three–body Schrödinger operators under a non–trapping condition for the classical flow of all subsystems. We also prove resolvent estimates for two–body Schrödinger operators with positive potentials when the energy level and the Planck constant tend both to zero.  相似文献   

18.
We are interested in the time asymptotic location of the level sets of solutions to Fisher–KPP reaction–diffusion equations with fractional diffusion in periodic media. We show that the speed of propagation is exponential in time, with a precise exponent depending on a periodic principal eigenvalue, and that it does not depend on the space direction. This is in contrast with the Freidlin–Gärtner formula for the standard Laplacian.  相似文献   

19.
In this paper, we investigate nonhomogeneous incompressible Navier–Stokes–Landau–Lifshitz system in two-dimensional (2-D). This system consists of Navier–Stokes equations coupled with Landau–Lifshitz–Gilbert equation, an evolutionary equation for the magnetization vector. We establish a blowup criterion for the 2-D incompressible Navier–Stokes–Landau–Lifshitz system with finite positive initial density.  相似文献   

20.
The Ball basis was introduced for cubic polynomials by Ball, and two different generalizations for higher degree m polynomials have been called the Said–Ball and the Wang–Ball basis, respectively. In this paper, we analyze some shape preserving and stability properties of these bases. We prove that the Wang–Ball basis is strictly monotonicity preserving for all m. However, it is not geometrically convexity preserving and is not totally positive for m>3, in contrast with the Said–Ball basis. We prove that the Said–Ball basis is better conditioned than the Wang–Ball basis and we include a stable conversion between both generalized Ball bases. The Wang–Ball basis has an evaluation algorithm with linear complexity. We perform an error analysis of the evaluation algorithms of both bases and compare them with other algorithms for polynomial evaluation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号