首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
This paper presents a comparison between measured and calculated acoustical parameters in eight high school classrooms. The mid frequency unoccupied and occupied reverberation times and the 1 kHz sound propagation (SP) of the reverberant and total speech levels in occupied classrooms were compared with analytical and numerical predictions. The ODEON 6.5 code and the Sabine formula gave the most accurate results for reverberation time in the empty classrooms with overall relative differences of 8.1% and 9.7%, respectively. With students present, the Eyring and Sabine formulas and Hodgson’s empirical model resulted to be the most accurate with relative differences of 11.1%, 13.2% and 13.6%, respectively. The reverberant speech levels decrease with increasing distance from the source at rates varying from −1.21 to −2.62 dB/distance doubling, and the Hodgson model fits the slope values quite well. The best predictions of the SP of the reverberant and total speech levels are shown, in order of accuracy, for the ODEON code, the Barron and Lee theory and the classical diffuse field theory. Lower rms errors were found when the measured total acoustic absorptions were used. The lowest rms error of 1.4 dB for the SP of the total speech level were found for both the ODEON code and the Barron and Lee theory.  相似文献   

2.
I.IntroductionLoudnessisoneofthedistinguishingcharactcristicsamonga1lacousticcriteriainauditori-umdesign.Insufficientorsevcrcunevendistributionofloudncsscausesseriousdeficiencytoauditoriumacoustics.Duetothelackofappropriateparamcter,thereisnowayeithertopre-dictloudnessinanauditoriumduringthedcsignstagc,ortochccktheactua1effectafterthecomp1etionoftheconstruction.Wca1lmighthavethcexpcricnccasanaudiencethatthestagcattractedmoreofourcon-ccntrationduringthesoftpassagcofthcpcrformance,whercaswewcre…  相似文献   

3.
Recent papers have discussed the optimal reverberation times in classrooms for speech intelligibility, based on the assumption of a diffuse sound field. Here this question was investigated for more ‘typical’ classrooms with non-diffuse sound fields. A ray-tracing model was modified to predict speech-intelligibility metric U50. It was used to predict U50 in various classroom configurations for various values of the room absorption, allowing the optimal absorption (that predicting the highest U50)—and the corresponding optimal reverberation time—to be identified in each case. The range of absorptions and reverberation times corresponding to high speech intelligibility were also predicted in each case. Optimal reverberation times were also predicted from the optimal surface-absorption coefficients using Sabine and Eyring versions of diffuse-field theory, and using the diffuse-field expression of Hodgson and Nosal. In order to validate the ray-tracing model, predictions were made for three classrooms with highly diffuse sound fields; these were compared to values obtained by the diffuse-field models, with good agreement. The methods were then applied to three ‘typical’ classrooms with non-diffuse fields. Optimal reverberation times increased with room volume and noise level to over 1 s. The accuracy of the Hodgson and Nosal expression varied with classroom size and noise level. The optimal average surface-absorption coefficients varied from 0.19 to 0.83 in the different classroom configurations tested. High speech intelligibility was, in general, predicted for a wide range of coefficients, but could not be obtained in a large, noisy classroom.  相似文献   

4.
The traditional Chinese theatre was often built with a courtyard. In such open-top space, the absence of a roof would mean little reverberation and non-diffused sound field. Acoustically the situation is quite different from that of any enclosed space. Therefore, the classic room acoustics, such as Sabine reverberation formula, would no longer be applicable due to the lack of sound reflections from the ceiling. As the parameter of reverberation time T30 shows the decay rate only, it would not properly characterize the prominent change in the fine structure of the echogram, particularly in case of a large reduction of reflections during the decay process. The sense of reverbrance in a courtyard space would differ noticeably from that of the equivalent 3D-T30 in an enclosed space. Based upon the characteristic analysis of the sound field in an open-top space, this paper presents a preliminary study on the acoustics of the courtyard theatres.  相似文献   

5.
Ning Han 《Applied Acoustics》2008,69(11):945-950
Optimal classroom acoustical design can directly enhance students’ learning efficiency. Effective acoustical designs are important and necessary to achieve a high degree of speech intelligibility for listeners. A speech intelligibility metric, U50, at different receiver positions in a classroom of 10 m × 8 m × 6 m was obtained by numerical simulations based on the mirror image model, with and without the uniform surface absorption coefficient. Comparisons show that increasing the absorption coefficient at the back wall can increase the speech intelligibility metric U50 to the largest extent in the classroom. A numerical case study was then conducted in a typical classroom of 10 m × 10 m × 3.5 m, and the speech intelligibility was assessed through a third-order polynomial of Wonyoung and Murray [Wonyoung Y, Murray H. Auralization study of optimal reverberation times for speech intelligibility for normal and hearing-impaired listeners in classrooms with diffuse sound field. J Acoust Soc Am 2006;120(2):801-7].  相似文献   

6.
吴礼福  王华  程义  郭业才 《应用声学》2016,35(4):288-293
混响是室内声学中的重要现象,在室内设计与音频信号处理中都需要测量或估计混响时间。本文改进了一种基于最大似然估计的混响时间盲估计方法,即采用说话人在房间中自然说话时发出的混响语音信号来估计混响时间的方法。该方法首先确定语音衰减段的最优边界,其次计算该衰减段的两个额外参数,据此筛选出符合条件的语音段,最后将满足条件的语音段采用最大似然估计得到混响时间估计值。在五个不同混响时间条件下的仿真表明,与已有方法相比,改进方法估计的混响时间同真实混响时间的偏差更小,方差更低,估计准确性较高。  相似文献   

7.
8.
The study of mosque acoustics, with regard to acoustical characteristics, sound quality for speech intelligibility, and other applicable acoustic criteria, has been largely neglected. In this study a background as to why mosques are designed as they are and how mosque design is influenced by worship considerations is given. In the study the acoustical characteristics of typically constructed contemporary mosques in Saudi Arabia have been investigated, employing a well-known impulse response. Extensive field measurements were taken in 21 representative mosques of different sizes and architectural features in order to characterize their acoustical quality and to identify the impact of air conditioning, ceiling fans, and sound reinforcement systems on their acoustics. Objective room-acoustic indicators such as reverberation time (RT) and clarity (C50) were measured. Background noise (BN) was assessed with and without the operation of air conditioning and fans. The speech transmission index (STI) was also evaluated with and without the operation of existing sound reinforcement systems. The existence of acoustical deficiencies was confirmed and quantified. The study, in addition to describing mosque acoustics, compares design goals to results obtained in practice and suggests acoustical target values for mosque design. The results show that acoustical quality in the investigated mosques deviates from optimum conditions when unoccupied, but is much better in the occupied condition.  相似文献   

9.
Reinforcing speech levels and controlling noise and reverberation are the ultimate acoustical goals of lecture-room design to achieve high speech intelligibility. The effects of sound absorption on these factors have opposite consequences for speech intelligibility. Here, novel ceiling baffles and reflectors were evaluated as a sound-control measure, using computer and 1/8-scale models of a lecture room with hard surfaces and excessive reverberation. Parallel ceiling baffles running front to back were investigated. They were expected to absorb reverberation incident on the ceiling from many angles, while leaving speech signals, reflecting from the ceiling to the back of the room, unaffected. Various baffle spacings and absorptions, central and side speaker positions, and receiver positions throughout the room, were considered. Reflective baffles controlled reverberation, with a minimum decrease of sound levels. Absorptive baffles reduced reverberation, but reduced speech levels significantly. Ceiling reflectors, in the form of obstacles of semicircular cross section, suspended below the ceiling, were also tested. These were either 7 m long and in parallel, front-to-back lines, or 0.8 m long and randomly distributed, with flat side up or down, and reflective or absorptive top surfaces. The long reflectors with flat side down and no absorption were somewhat effective; the other configurations were not.  相似文献   

10.
The reverberation time (RT) is an important parameter for characterizing the quality of an auditory space. Sounds in reverberant environments are subject to coloration. This affects speech intelligibility and sound localization. Many state-of-the-art audio signal processing algorithms, for example in hearing-aids and telephony, are expected to have the ability to characterize the listening environment, and turn on an appropriate processing strategy accordingly. Thus, a method for characterization of room RT based on passively received microphone signals represents an important enabling technology. Current RT estimators, such as Schroeder's method, depend on a controlled sound source, and thus cannot produce an online, blind RT estimate. Here, a method for estimating RT without prior knowledge of sound sources or room geometry is presented. The diffusive tail of reverberation was modeled as an exponentially damped Gaussian white noise process. The time-constant of the decay, which provided a measure of the RT, was estimated using a maximum-likelihood procedure. The estimates were obtained continuously, and an order-statistics filter was used to extract the most likely RT from the accumulated estimates. The procedure was illustrated for connected speech. Results obtained for simulated and real room data are in good agreement with the real RT values.  相似文献   

11.
This paper investigated the absorption coefficients of acoustically transparent ceilings using 1:25 scale models. From a field survey of 18 existing halls, it was found that the open ceilings were equipped with steel truss structures, ducts, catwalks and ceiling surfaces. In order to investigate the absorption characteristics of the equipped ceilings, measurements were made using a 1:25 reverberation chamber based on ISO 354. Results showed that for an empty ceiling with a depth of 6 m, the absorption coefficient with a 50%-perforated ceiling surface is 0.2-0.3 above 500 Hz. If there were steel structures inside the ceiling, the absorption coefficient increased by 0.1 at 125 Hz to 2 kHz. Adding ducts and catwalks increased the absorption by 1-2 kHz. The absorption coefficients of the equipped ceilings ranged from 0.19 to 0.61 and the absorption characteristics were mainly found at high frequencies. Maximum absorption was observed in heavily equipped ceiling structures.  相似文献   

12.
The methods investigated for the room volume estimation are based on geometrical acoustics, eigenmode, and diffuse field models and no data other than the room impulse response are available. The measurements include several receiver positions in a total of 12 rooms of vastly different sizes and acoustic characteristics. The limitations in identifying the pivotal specular reflections of the geometrical acoustics model in measured room impulse responses are examined both theoretically and experimentally. The eigenmode method uses the theoretical expression for the Schroeder frequency and the difficulty of accurately estimating this frequency from the varying statistics of the room transfer function is highlighted. Reliable results are only obtained with the diffuse field model and a part of the observed variance in the experimental results is explained by theoretical expressions for the standard deviation of the reverberant sound pressure and the reverberation time. The limitations due to source and receiver directivity are discussed and a simple volume estimation method based on an approximate relationship with the reverberation time is also presented.  相似文献   

13.
The paper presents the results of investigation studies involving the impact of atmospheric factors on sound-absorbing parameters of roadside acoustic screen panels. The research studies comprised the aging test consisting of 1000 cycles in simulated conditions, sound absorption measurements and surface morphology tests, using the SEM scanning method. The simulation of aging consisted of 100 or 150 cycles at a time. Then, the panels were investigated in the reverberation chamber to define their sound-absorbing properties. The process was repeated until 1000 cycles were completed. Basing on the carried out tests, a statistical linear model was worked out which was used to estimate the value of a single number sound absorption coefficient after successive aging cycles. The optimality of the model was demonstrated by means of a statistical test confirming normal distribution of random residuals. For the research studies, we employed an innovative structural design of panels for which aging characteristics were obtained. Basing on the obtained results and on the statistical analysis, the prospects to maintain acoustic properties of the panels during their service life was estimated.  相似文献   

14.
中国筝的声功率级测试   总被引:2,自引:2,他引:0       下载免费PDF全文
筝是中国古老的弹弦乐器。但迄今为止,对其声功率级一直未进行科学的测定。本文在一混响室内根据ISO及GB标准,对二十一弦筝的声功率级进行了首次测定。两位资深乐师在混响室内分别演奏各自的乐器,通过围绕乐师和乐器布置的四通道测试设备,对筝所辐射的声功率级和动态范围进行测定。测试结果表明,中国筝在以不同力度演奏单音、音阶和乐曲时所辐射的声功率级及其频率特性均有所不同。考虑到乐器演奏音阶时所辐射的声功率级及其动态范围与演奏乐曲时的声功率级接近,并且,音乐的空间感也大都在乐器以f力度演奏乐曲的强音标志乐段时最为显著,故此我们建议中国筝所辐射的声功率级用其以f力度演奏音阶时的平均声功率级表示。本文测试的两架中国筝以f力度演奏音阶时的平均声功率级为85.9dB。文中不仅首次公布了中国筝声功率级的测试结果,并且所介绍的测试方法对其它乐器声功率级测试也具有借鉴意义。民族乐器所辐射的声音性能的确定是民族音乐厅堂音质研究的基础。  相似文献   

15.
An algorithm for blind estimation of reverberation time (RT) in speech signals is proposed. Analysis is restricted to the free-decaying regions of the signal, where the reverberation effect dominates, yielding a more accurate RT estimate at a reduced computational cost. A spectral decomposition is performed on the reverberant signal and partial RT estimates are determined in all signal subbands, providing more data to the statistical-analysis stage of the algorithm, which yields the final RT estimate. Algorithm performance is assessed using two distinct speech databases, achieving 91% and 97% correlation with the RTs measured by a standard nonblind method, indicating that the proposed method blindly estimates the RT in a reliable and consistent manner.  相似文献   

16.
This paper examines the accuracy of the speech transmission index (STI) calculated from the reverberation time (T) and signal-to-noise ratio (LSN) of enclosed spaces. Differences between measured and predicted STIs have been analysed in two rooms (reverberant vs. absorbent), for a wide range of absorption conditions and signal-to-noise ratios (sixteen tests). The STI was measured using maximum length sequence analysis and predictions were calculated using either measured or predicted values of T and LSN, the latter assuming diffuse sound field conditions. The results obtained for all the conditions tested showed that STI predictions based on T and LSN tend to underestimate the STI, with differences between measured and predicted STIs always lower than 0.1 (on a 0.0–1.0 scale), and on average lower than 0.06. According to previous research, these differences are noticeable and therefore non-negligible, as 0.03 is the just noticeable difference in STI. The use of either measured or predicted values of T and LSN provided similar STI predictions (i.e. non-noticeable changes), with differences between predictions that are on average lower than 0.03 for the absorbent room, and lower than 0.01 for the reverberant room.  相似文献   

17.
It is known that the sound field in a long space is not diffuse, and that the classic theory of room acoustics is not applicable. A theoretical model is developed for the prediction of reverberation time and speech transmission index in rectangular long enclosures, such as corridors and train stations, where the acoustic quality is important for speech. The model is based on an image-source method, and both acoustically hard and impedance boundaries are investigated. An approximate analytical solution is used to predict the frequency response of the sound field. The reverberation time is determined from the decay curve which is computed by a reverse-time integration of the squared impulse response. The angle-dependence of reflection coefficients of the boundaries and the change of phase upon reflection are incorporated in this model. Due to the relatively long distance of sound propagation, the effect of atmospheric absorption is also considered. Measurements of reverberation time and speech transmission index taken from a real tunnel, a corridor, and a model tunnel are presented. The theoretical predictions are found to agree well with the experimental data. An application of the proposed model has been suggested.  相似文献   

18.
It has long been recognized that single-number quantities Rw, DnT,w or Dn,w result in different conclusions in objective rating of airborne sound insulation between dwellings. The difference between the values of these single-number quantities (SNQ), however, does not prove which of them describes the sound transmission between rooms most correctly. The main object of this article was to study which SNQ correspond best with transmitted living sound levels in buildings when reverberation time, volume of receiving room and sound insulation are taken into account. Data of 100 field measurements of airborne sound insulation were collected as well as 207 reverberation times of furnished rooms. The transmitted sound levels of living sounds were evaluated on the basis of known living sound spectra and measured level differences D. The results show that the SNQs standardized to reference reverberation time of 0.5 s lead in all cases to best correlation between the SNQs and the sound levels of transmitted living sounds. It was also checked whether the rating by DnT,w would lead to higher transmitted sound levels of living sounds in larger rooms, but this was not detected. The use of DnT,w makes rooms of different volumes equal in regard to required sound insulation between them. It is thus justified to replace Rw with DnT,w as the SNQ for rating the airborne sound insulation. Widening the frequency range down to 50 Hz or up to 5000 Hz did not give noteworthy improvement in the correlation.  相似文献   

19.
This study concerns the determination of an equivalent acoustic absorption model of the flat heterogeneous walls present in industrial rooms. Numerous measurements of the reverberation time in reverberant room were carried out for several facings with different distributed spatial absorption. Experimental results were compared to classical reverberation time models. The measurements showed that the change in average acoustic absorption depends on the relative distance between the sound source and the absorbent panels, as it is this which creates heterogeneity. Therefore, taking into consideration, in the theoretical models of average acoustic absorption studied, the solid angles representing the equivalent area of the panels as viewed by the source, improved the accuracy of the calculated reverberation time compared to the measurements. This equivalent acoustic absorption model, based on Sabine's absorption coefficient and employing the solid angle ratio, was used to calculate the reverberation time of several industrial rooms. The results obtained are better than those obtained with the standard formula.  相似文献   

20.
Measurements of steady-state sound pressure levels above the audience in large lecture halls show that the classical equation for predicting the sound pressure level is not accurate. The direct field above the seats was measured on a 1:10 scale model and was found to be dependent on the incidence angle and direction of sound propagation across the audience. The reverberant field above the seats in the model was calculated by subtracting the direct field from the measured total field and was found to be dependent on the magnitude and particularly on the placement of absorption. The decrease of sound pressure level versus distance in the total field depends on the angle (controlled by absorption placement) at which the strong reflections are incident upon the audience area. Sound pressure level decreases at a fairly constant rate with distance from the sound source in both the direct and reverberant field, and the decrease rate depends strongly on the absorption placement. The lowest rate of decay occurs when the side walls are absorptive, and both the ceiling and rear wall are reflective. These consequences are discussed with respect to prediction of speech intelligibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号