首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
证明了线性分形插值函数的Riemann-Liouville分数阶微积分仍然是线性分形插值函数.在基于线性分形插值函数有关讨论的基础上,证明了线性分形插值函数的Box维数与Riemann-.Liouville分数阶微积分的阶之间成立着线性关系.文中给出的例子的图像和数值结果更进一步说明了这个结论.  相似文献   

2.
A one-dimensional continuous function of unbounded variation on [0,1] has been constructed.The length of its graph is infnite,while part of this function displays fractal features.The Box dimension of its Riemann–Liouville fractional integral has been calculated.  相似文献   

3.
In this paper, we present a new method to calculate the box dimension of a graph of continuous functions. Using this method, we obtain the box dimension formula for linear fractal interpolation functions (FIFs). Furthermore we prove that the fractional integral of a linear FIF is also a linear FIF and in some cases, there exists a linear relationship between the order of fractional integral and box dimension of two linear FIFs.  相似文献   

4.
In this paper, the relationship between Riemann-Liouville fractional integral and the box-counting dimension of graphs of fractal functions is discussed.  相似文献   

5.
Chandra  Subhash  Abbas  Syed 《Numerical Algorithms》2022,91(3):1021-1046
Numerical Algorithms - In this article, we provide a rigorous study on the fractal dimension of the graph of the mixed Riemann-Liouville fractional integral for various choices of continuous...  相似文献   

6.
If a continuous function f(x) has bounded variation on the unit interval [0,1], the box dimension of f(x) is 1. Furthermore, the box dimension of a Riemann-Liouville fractional integral of f(x) is still 1.  相似文献   

7.
We know that the Box dimension of f(x) ∈ C~1[0,1] is 1. In this paper, we prove that the Box dimension of continuous functions with bounded variation is still1. Furthermore, Box dimension of Weyl fractional integral of above function is also 1.  相似文献   

8.
There are many research available on the study of a real-valued fractal interpolation function and fractal dimension of its graph. In this paper, our main focus is to study the dimensional results for a vector-valued fractal interpolation function and its Riemann–Liouville fractional integral. Here, we give some results which ensure that dimensional results for vector-valued functions are quite different from real-valued functions. We determine interesting bounds for the Hausdorff dimension of the graph of a vector-valued fractal interpolation function. We also obtain bounds for the Hausdorff dimension of the associated invariant measure supported on the graph of a vector-valued fractal interpolation function. Next, we discuss more efficient upper bound for the Hausdorff dimension of measure in terms of probability vector and contraction ratios. Furthermore, we determine some dimensional results for the graph of the Riemann–Liouville fractional integral of a vector-valued fractal interpolation function.  相似文献   

9.
Let L be a Schr?dinger operator of the form L =-Δ + V acting on L~2(R~n) where the nonnegative potential V belongs to the reverse H?lder class B_q for some q ≥ n. In this article we will show that a function f ∈ L~(2,λ)(R~n), 0 λ n, is the trace of the solution of L_u =-u_(tt) + L_u =0, u(x, 0) = f(x), where u satisfies a Carleson type condition sup x_B,r_Br_B~(-λ)∫_0~(rB)∫_(B(x_B,r_B))t|u(x,t)|~2dxdt≤C∞.Its proof heavily relies on investigate the intrinsic relationship between the classical Morrey spaces and the new Campanato spaces L_L~(2,λ)(R~n) associated to the operator L, i.e.L_L~(2,λ)(R~n)=L~(2,λ)(R~n).Conversely, this Carleson type condition characterizes all the L-harmonic functions whose traces belong to the space L~(2,λ)(R~n) for all 0 λ n.  相似文献   

10.
We consider two-parameter fractional integrals and Weyl, Liouville, and Marchaut derivatives and substantiate some of their properties. We introduce the notion of generalized two-parameter Lebesgue-Stieltjes integral and present its properties and computational formulas for the case of differentiable functions. The main properties of two-parameter fractional integrals and derivatives of Hölder functions are considered. As a separate case, we study generalized two-parameter Lebesgue-Stieltjes integrals for an integrator of bounded variation. We prove that, for Hölder functions, the integrals indicated can be calculated as the limits of integral sums. As an example, generalized two-parameter integrals of fractional Brownian fields are considered.Translated from Ukrainskyi Matematychnyi Zhurnal, Vol. 56, No. 4, pp. 435–450, April, 2004.  相似文献   

11.
In recent years, the concept of fractal analysis is the best nonlinear tool towards understanding the complexities in nature. Especially, fractal interpolation has flexibility for approximation of nonlinear data obtained from the engineering and scientific experiments. Random fractals and attractors of some iterated function systems are more appropriate examples of the continuous everywhere and nowhere differentiable (highly irregular) functions, hence fractional calculus is a mathematical operator which best suits for analyzing such a function. The present study deals the existence of fractal interpolation function (FIF) for a sequence of data \({\{(x_n,y_n):n\geq 2\}}\) with countable iterated function system, where \({x_n}\) is a monotone and bounded sequence, \({y_n}\) is a bounded sequence. The integer order integral of FIF for sequence of data is revealed if the value of the integral is known at the initial endpoint or final endpoint. Besides, Riemann–Liouville fractional calculus of fractal interpolation function had been investigated with numerical examples for analyzing the results.  相似文献   

12.
潘学哉  冯志刚 《大学数学》2006,22(6):106-110
介绍了分形插值函数和迭代函数系统以及v阶黎曼-刘维尔分数阶积分、微分的概念和相关定理.由于分形插值函数满足应用分数阶微积分处理问题的条件,所以利用这些概念及分步积分的方法讨论了折线段分形插值函数的分数阶积分的连续性,可微性及哪些点是不可微的,进一步说明了该插值函数分数阶微分的连续性并指出其不连续点,用黎曼-刘维尔分数阶微积分与分形插值函数结合起来研究,目的是想设法跟经典微积分一样,能找出函数上在该点的微积分的具体的实际应用意义.这些理论为研究分形插值函数的分数阶微积分的实际应用意义提供了一些理论基础.  相似文献   

13.
In this paper, we obtain the necessary and sufficient condition of the pre-compact sets in the variable exponent Lebesgue spaces, which is also called the Riesz-Kolmogorov theorem. The main novelty appearing in this approach is the constructive approximation which does not rely on the boundedness of the Hardy-Littlewood maximal operator in the considered spaces such that we do not need the log-H¨older continuous conditions on the variable exponent. As applications, we establish the boundedness of Riemann-Liouville integral operators and prove the compactness of truncated Riemann-Liouville integral operators in the variable exponent Lebesgue spaces. Moreover, applying the Riesz-Kolmogorov theorem established in this paper, we obtain the existence and the uniqueness of solutions to a Cauchy type problem for fractional differential equations in variable exponent Lebesgue spaces.  相似文献   

14.
In order to cope with some difficulties due to the fact that the derivative of a constant is not zero with the commonly accepted Riemann-Liouville definition of fractional derivative, one (Jumarie) has proposed recently an alternative referred to as (local) modified Riemann-Liouville definition, which directly, provides a Taylor’s series of fractional order for non differentiable functions. We examine here in which way this calculus can be used as a framework for a differential geometry of fractional order. One will examine successively implicit function, manifold, length of curves, radius of curvature, Christoffel coefficients, velocity, acceleration. One outlines the application of this framework to Lagrange optimization in mechanics, and one concludes with some considerations on a possible fractional extension of the pseudo-geodesic of thespecial relativity and of the Lorentz transformation.  相似文献   

15.
The paper deals with the solution of some fractional partial differential equations obtained by substituting modified Riemann-Liouville derivatives for the customary derivatives. This derivative is introduced to avoid using the so-called Caputo fractional derivative which, at the extreme, says that, if you want to get the first derivative of a function you must before have at hand its second derivative. Firstly, one gives a brief background on the fractional Taylor series of nondifferentiable functions and its consequence on the derivative chain rule. Then one considers linear fractional partial differential equations with constant coefficients, and one shows how, in some instances, one can obtain their solutions on by-passing the use of Fourier transform and/or Laplace transform. Later one develops a Lagrange method via characteristics for some linear fractional differential equations with nonconstant coefficients, and involving fractional derivatives of only one order. The key is the fractional Taylor series of non differentiable functionf(x + h) =E α (h α D x α )f(x).  相似文献   

16.
Holder property of fractal interpolation function   总被引:3,自引:0,他引:3  
The purpose of this paper is to prove a Holder property about the fractal interpolationfunction L(x),ω(L,δ)=O(δ~α),and an approximate estimate|f-L|≤2{α(h)+||f||/1-h~(2-D)·h~(2-D)},where D is a fractal dimension of L(x).  相似文献   

17.
We consider Fourier series given by a type of fractional integral of automorphic forms, and we study their local and global properties, especially differentiability and fractal dimension of the graph of their real and imaginary parts. In this way we can construct fractal objects and continuous non-differentiable functions associated with elliptic curves and theta functions.

  相似文献   


18.
19.
The present paper investigates the fractal structure of fractional integrals of Weierstrass functions. The ezact box dimension for such functions many important cases is established. We need to point out that, although the result itself achieved in the present paper is interesting, the new technique and method should be emphasized. These novel ideas might be useful to establish the box dimension or Hausdorff dimension (especially for the lower bounds) for more general groups of functions.  相似文献   

20.
The result of Golubov [5, Theorem 2] on the boundedness of the Hardy-Littlewood operator $$ \mathcal{B}f(x): = \frac{1} {x}\int_0^x {f(t)} dt $$ in the space BMO(?) is well known. The author of the present paper solves the analogous problem in the weighted space BMO on the semi-axis ?+ for the operator $$ T_w f(x): = \frac{1} {{W(x)}}\int_0^x {f(t)w(t)} dt $$ and also in the classical space BMO(?+) for a class of integral operators involving, for example, the Riemann-Liouville fractional integral.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号