首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
Water-soluble terpolymer-mediated calcium carbonate crystal modification   总被引:1,自引:0,他引:1  
The structure of the polymeric substrate plays an important role in the nucleation of calcium carbonate crystals. In this study a synthetic water-soluble poly(acrylamide-co-2-acrylamido-2-methyl-1-propane sodium sufonate-co-n-vinyl pyrrolidone) was found to be a substrate favoring the nucleation of polymorphs of calcium carbonate crystals under specific experimental conditions. Morphological characterization of the polymorphs was done using atomic force microscopy, scanning electron microscopy, energy dispersive spectroscopy, FTIR analysis, and X-ray diffraction. If calcium carbonate is precipitated in the presence of terpolymer, a remarkable increase in nucleation density (number of crystals per unit area) was observed. Stacked crystals of rhombohedral morphology that formed may be due to the presence of sodium sulfonate groups on the terpolymer. However, in the presence of poly-L-aspartic acid, almost all crystals are hollow and have needlelike or plate like morphology was formed. This change in calcium carbonate morphology can be explained by the variation of the polymer conformation, if poly- L-aspartic acid is present.  相似文献   

2.
依据生物矿化的基本原理,以蛋清蛋白为基质,透析袋组成隔室,在仿生条件下,诱导碳酸钙的合成。扫描电子显微镜和红外测试结果表明,半透膜和蛋白质虽然直接影响碳酸钙的形貌,但在半透膜和蛋清蛋白调控下生成的碳酸钙均为球霰石型晶体。实验结果表明,半透膜的选择性透过功能不仅限制了蛋白质的自由移动,同时也限制了蛋白质和Ca2+配合物的自由移动,从而为制备特殊形貌的碳酸钙固体提供了基础。  相似文献   

3.
高艳芳  王海水 《应用化学》2015,32(7):831-836
晶体的晶型和形貌是碳酸钙制备中的关键问题之一。 采用尿素水解均匀沉淀法来控制碳酸钙的晶型和形貌。 利用XRD和SEM等技术手段对CaCO3晶体的结构和形貌进行了表征。 结果表明,高温条件下(90 ℃)水溶液中得到均匀的针状结构的文石晶体。 添加适量柠檬酸钠后,则得到的是特殊形貌的方解石晶体。 在乙醇/水混合溶剂中,柠檬酸钠对CaCO3晶体的形貌也有重要影响,通过改变乙醇体积分数,得到了中空绒毛球状的球霰石。  相似文献   

4.
Calcium carbonate was deposited on a stainless steel surface with the use of an electrical potential of 10 V. The crystals formed on the surface were examined with X-ray diffraction and with scanning electron microscopy, which revealed that calcite, vaterite and amorphous calcium carbonate was formed. Two different surface active polymers were added to the solution and their effect on the crystal structure was investigated. It was found that the more hydrophilic of the two polymers promoted calcite growth and suppressed vaterite growth. The more hydrophobic polymer completely inhibited vaterite growth. Both polymers decreased the amount of crystals formed on the steel surface, the more hydrophobic polymer being the most effective. The crystal inhibition efficiency was enhanced close to the cloud point of the polymers. The results were compared with the effect of poly(acrylic acid), a commonly used antiscalant. It was found that poly(acrylic acid) was about as efficient as the more hydrophobic polymer in decreasing the amount of calcium carbonate. At higher concentrations of poly(acrylic acid), almost all of the calcium carbonate precipitated in the amorphous form.  相似文献   

5.
明胶基质作用下碳酸钙的仿生合成   总被引:11,自引:0,他引:11  
付丽红  程惊秋  来国莉 《化学学报》2005,63(17):1626-1632
依据生物矿化的基本原理, 以明胶为基质, 在动态条件下, 仿生合成碳酸钙/明胶复合材料. 扫描电子显微镜和能量分散X射线(SEM-EDAX)分析表明, 明胶基质中形成的碳酸钙完全不同于纯水中形成的碳酸钙, 具有独特的微观结构形态和取向. 明胶浓度不同, 晶体的形态、取向以及主要元素Ca, O和N的含量相差较大.  相似文献   

6.
Calcium carbonate was precipitated from calcium hydroxide and carbonic acid solutions at 25 degrees C, with and without addition of different magnesium (MgSO(4), Mg(NO(3))(2) and MgCl(2)) and sodium salts (Na(2)SO(4), NaNO(3) and NaCl) of identical anions, in order to study the mode of incorporation of magnesium and inorganic anions and their effect on the morphology of calcite crystals over a range of initial reactant concentrations and limited c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios. The morphology, crystal size distribution, composition, structure, and specific surface area of the precipitated crystals, as well as the mode of cation and anion incorporation into the calcite crystal lattice, were studied by a combination of optical and scanning electron microscopy (SEM), electronic counting, a multiple BET method, thermogravimetry, FT-IR spectroscopy, X-ray diffraction (XRD), and electron paramagnetic resonance (EPR) spectroscopy. In the systems of high initial relative supersaturation, precipitation of an amorphous precursor phase preceded the formation of calcite, whereas in those of lower supersaturation calcite was the first and only polymorphic modification of calcium carbonate that appeared in the system. The magnesium content in calcite increased with the magnesium concentration in solution and was correlated with the type of magnesium salt used. Mg incorporation caused the formation of crystals elongated along the calcite c axis and, in some cases, the appearance of new [011] faces. Polycrystalline aggregates were formed when the c(i)(Mg(2+))/c(i)(Ca(2+)) molar ratios in solution were increased. Addition of sulfate ions, alone, caused formation of spherical calcite polycrystalline aggregates.  相似文献   

7.
Chitosan/hydroxyapatite composite microparticles were prepared by a solid-in-water-in-oil emulsification cross-linking method. The characteristics and activity in presence of simulated body fluid for 14 and 21?days were investigated. The size distribution, surface morphology, and microstructure of these biomaterials were evaluated. The scanning electron microscopy revealed an aggregate of microparticles with a particle size, ranged from 4 to 10???m. The deposited calcium phosphate was studied using X-ray diffraction analysis, Fourier transform infrared spectroscopy, and inductively coupled plasma/atomic emission?spectroscopy analysis of phosphorus. These results show that the mineral, formed on microparticles, was a mixture of carbonated hydroxyapatite and calcite. Scanning electron microscopy revealed that calcium phosphate crystals growth was in form of rods organized as concentric triangular packets interconnected to each other by junctions. Interaction between chitosan and growing carbonated hydroxyapatite and calcite crystals are responsible for a composite growth into triangular and spherical shapes. The results demonstrated that these microparticles were potential materials for bone repair.  相似文献   

8.
碳酸钙微米球的制备与表征   总被引:1,自引:0,他引:1  
采用醋酸钙和碳酸钠为原料,在反应温度为5℃和柠檬酸三钠质量百分浓度为15%的条件下,采用沉淀法合成出了粒度为1~4μm、分散性好的球形碳酸钙粉体。用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、红外光谱仪(IR)、原子力扫描探针显微镜(ASPM)、光学显微镜、粒度分析仪等对样品进行了表征,并用光学显微镜跟踪考察了碳酸钙微米球的形成过程。结果表明,碳酸钙微米球是由大量纳米级颗粒组装而成。  相似文献   

9.
Bacterially induced carbonate mineralization has been proposed as a new method for the restoration of limestones in historic buildings and monuments. We describe here the formation of calcite crystals by extracellular polymeric substances isolated from Bacillus firmus and Bacillus sphaericus. We isolated bacterial outer structures (glycocalix and parietal polymers), such as exopolysaccharides (EPS) and capsular polysaccharides (CPS) and checked for their influence on calcite precipitation. CPS and EPS extracted from both B. firmus and B. sphaericus were able to mediate CaCO3 precipitation in vitro. X-ray microanalysis showed that in all cases the formed crystals were calcite. Scanning electron microscopy showed that the shape of the crystals depended on the fractions utilized. These results suggest the possibility that biochemical composition of CPS or EPS influences the resulting morphology of CaCO3. There were no precipitates in the blank samples. CPS and EPS comprised of proteins and glycoproteins. Positive alcian blue staining also reveals acidic polysaccharides in CPS and EPS fractions. Proteins with molecular masses of 25-40 kDa and 70 kDa in the CPS fraction were highly expressed in the presence of calcium oxalate. This high level of synthesis could be related to the binding of calcium ions and carbonate deposition.  相似文献   

10.
该文以更加接近生物矿化的方法研究了蔗糖/精氨酸体系对碳酸钙晶体取向、形貌和晶型的控制作用.XRD 分析表明,在蔗糖/L-精氨酸混合体系中合成的晶体主要为碳酸钙的球霰石晶型及少量的方解石型,在单独的蔗糖或L-精氨酸溶液中基本是球霰石晶型.SEM分析表明,蔗糖和L-精氨酸均可诱导形成特殊形貌的碳酸钙.实验结果表明,蔗糖/精...  相似文献   

11.
The reaction between solid calcium carbonate and the aqueous fluorides NH4F, KF, and NaF has been completely investigated. The reaction of CaCO3 (solid) is completely independent of the dimensions of its polycrystalline particles and gives calcium fluoride. The calcium fluoride is formed in the same form and size as the grains of the original calcium carbonate. A course crystalline fluorite is formed at a satisfactory rate and with a sufficiently high mechanical strength to be of industrial interest.The course of the reaction appears to involve penetration of the fluoride solution into the body of a grain through voids which develop in the solid material owing to the formation of polycrystalline CaF2 with a different molar volume as compared with CaCO3. Data were obtained on the rate of formation and nature of the fluoride formed.The fluorite which is formed around the dissolving calcite was shown by X-ray diffraction and electron microscopy to have a polycrystalline aggregated structure and an estimate is made of crystallite size.The fluorite grains are pseudomorphs of the calcite crystals and there is crystallographic orientation of the product with respect to the parent phase.  相似文献   

12.
孪生球状碳酸钙的直接混合沉淀法制备及表征   总被引:3,自引:0,他引:3  
以醋酸钙和碳酸钠为原料, 柠檬酸三钠为晶形控制剂, 利用液相直接混合沉淀法合成了分散性好、粒度约1.5~3.0 μm、长短轴比约2∶1的孪生球形碳酸钙晶体. 利用扫描电子显微镜(SEM)、X射线衍射仪(XRD)、傅里叶红外光谱仪(FTIR)、原子力扫描探针显微镜(ASPM)和粒度分析仪等对样品进行了表征. 结果表明, 在不添加柠檬酸三钠的溶液中得到微米级的立方状碳酸钙晶体, 而添加柠檬酸三钠(质量分数30%~40%)后则得到具有不同表面粗糙度的孪生球状碳酸钙晶体. 同时, 用分形生长理论和成核限制聚集(NLA)模型对孪生球状碳酸钙粒子的形成机理进行了分析.  相似文献   

13.
Stimulation of microbially induced calcium carbonate precipitation (MICCP) is likely to be influenced by calcium sources. In order to study such influences, we performed MICCP using Bacillus sp. CR2 in nutrient broth containing urea, supplemented with different calcium sources (calcium chloride, calcium oxide, calcium acetate and calcium nitrate). The experiment lasted 7 days, during which bacterial growth, urease activity, calcite production and pH were measured. Our results showed that calcium chloride is the better calcium source for MICCP process, since it provides higher urease activity and more calcite production. The influences of calcium sources on MICCP were further studied using Fourier transform-infrared (FTIR) spectroscopy, scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses. These analyses confirmed that the precipitate formed was CaCO3 and composed of predominantly calcite crystals with a little amount of aragonite and vaterite crystals. The maximum yield of calcite precipitation was achievable with calcium chloride followed by calcium nitrate as a calcium source. The results of present study may be applicable to media preparation during efficient MICCP process.  相似文献   

14.
The influence of egg white lysozyme on the size, shape, crystallography, and chemical composition of amorphous calcium carbonate (ACC) particles obtained from aqueous CaCl2-dimethyl carbonate (DMC)-NaOH solutions was studied. At the onset of precipitation, the presence of lysozyme led to much smaller particles (50-400 nm spherical amorphous lysozyme-calcium carbonate particles (Ly-ACC)) than those obtained from lysozyme-free solution. The nanospheres were in some cases aggregated and in addition embedded in a faint network. Their size and interconnection depended on the concentration of egg white lysozyme. When the Ly-ACC particles were left in contact with the mother liquor (CaCl2/DMC/NaOH/lysozyme solution) for 24 h, they transformed directly and exclusively into crystalline calcite. The observed results may be of relevance for a better understanding of the role of lysozyme in the process of eggshell mineralization.  相似文献   

15.
The fast mixing of aqueous solutions of calcium chloride and sodium carbonate could immediately result in amorphous calcium carbonate (ACC). Under vigorous stirring, the formed ACC in the precipitation system will dissolve first and, then, transform within minutes to produce crystalline forms of vaterite and calcite. After that, the solution-mediated mechanism dominates the transformation of the thermodynamically unstable vaterite into the thermodynamically stable calcite. Although ACC is the least stable form of the six anhydrous phases of calcium carbonate (CaCO(3)), it could be, however, produced and stabilized by a variety of organisms. To better understand the formation-transformation mechanism of ACC and vaterite into calcite, ex-situ methods (i.e., scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction spectroscopy) were used to characterize the formation-transformation process of ACC and vaterite in aqueous systems without organic additives, showing that ACC sampled at different conditions has different properties (i.e., lifetime, morphology, and spectrum characterization). It is also very interesting to capture the obviously polycrystalline particles of CaCO(3) during the transformation process from vaterite to calcite, which suggests the formation mechanism for the calcite superstructure with multidimensional morphology.  相似文献   

16.
采用液相沉淀法,以硝酸铋[Bi(NO_3)_3]为添加剂来调控碳酸钙晶体的形状与大小,制备了海螺状碳酸钙粒子.通过扫描电子显微镜(SEM)、X射线衍射仪(XRD)、热重分析仪(TGA)、原子荧光光谱仪(AFS)等对产物的结构和性能进行了表征.结果表明,在60℃条件下,添加20 mL浓度为2 g/L的Bi(NO_3)_3溶液可得到海螺状球霰石型碳酸钙粒子,且其荧光性明显增强.在碳酸钙的成核过程中,Bi~(3+)的加入起到了显著的调控作用.  相似文献   

17.
The morphology of calcium carbonate prepared via homogeneous synthesis from carbonate–chloride solutions was studied. The precipitates were investigated by scanning electron microscopy (SEM) and Xray diffraction. The effects of the ratio between the chloride and carbonate components of a solution on the morphology, crystal structure, and particle size of precipitated calcium carbonate were illustrated.  相似文献   

18.
采用原位化学还原方法制备出了两种不同形貌的镍纳米粒子-石墨烯(Ni-GNs)复合材料, 并研究了形貌对复合材料电磁吸收性能的影响. 制备过程中通过改变反应物的加入顺序, 制备出球形和刺球形镍纳米粒子-石墨烯复合材料. 利用X射线衍射(XRD)仪、扫描电子显微镜(SEM)、透射电子显微镜(TEM)和矢量网络分析仪(VNA)对复合材料的形貌、结构和微波吸收性能进行了表征. 结果表明: 刺球形镍纳米粒子-石墨烯复合材料相比于球形镍纳米粒子-石墨烯复合材料具有优异的电磁吸收性能, 其原因是由于复合材料中刺球形镍纳米粒子独特的各向同性天线形貌引起的尖端放电效应. 因此利用简单的原位化学还原制备不同形貌镍纳米粒子-石墨烯复合材料的方法可以作为其他复合材料制备的总体路线.  相似文献   

19.
In this study, three types of cementitious composites based on (i) white Portland cement and sand (cement-to-aggregate 1:3, and water-to-cement 0.50), (ii) white Portland cement and marble powder (cement-to-aggregate 1:2, and water-to-cement 0.60), and (iii) white Portland cement and marble powder with polycarboxylate-based admixture (HRWR) (cement-to-aggregate 1:2, and water-to-cement 0.40?+?HRWR) were studied. Their states after 28 and 120?days of water curing were evaluated by measurement of physical?Cmechanical properties, such as density, compressive strength and porosity. Thermal analysis, X-ray diffraction analysis and scanning electron microscopy were used to identify the crystal phases and their morphology. The experimental data show that the white cement mortars with higher water content exhibit larder variety of newly formed phases, like hydration products of the C?CS?CH type. The structure of mortars with polycarboxylate-based admixture is so dense that there is no possibility of crystal hydrates development at late curing ages. The use of marble as filler leads to a partial inclusion of carbonate ions in the newly formed hydrated phases (carbo-aluminates).  相似文献   

20.
亚相pH值对磷脂单层下甘氨酸结晶过程的影响   总被引:1,自引:0,他引:1  
亚相pH值对磷脂单层下甘氨酸结晶过程的影响;Langmuir单分子层; 结晶; 取向; 形貌  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号