共查询到12条相似文献,搜索用时 0 毫秒
1.
The problem with toxic metal ion determination in blood is the adsorption of organic compounds on the electrode surface and the formation of complexes between metal ions and organic constituents of blood. This is the reason why usually preliminary acid digestion or other sample pretreatment is used. Two kinds of electrodes have been used: “Ultra-Trace Electrode”, made from impregnated graphite (I), and thick film graphite disposable electrodes (II). The analysis of whole blood with different sample preparation methods shows, that chemical digestion is not necessary for the analysis. Electrochemical two-stage sample preparation provides the possibility for analysing whole blood with the mentioned electrodes. Thick film disposable electrodes are less sensitive to the interference of organic constituents of blood. These electrodes give the possibility to determine total cadmium, lead and copper concentration in whole blood without special sample pretreatment. The application of “Ultra-Trace Electrode” for blood analysis is possible only after preliminary pretreatment of blood by chemical digestion or electrochemical sample preparation. 相似文献
2.
研究了丁二酮肟 氨 氯化铵 柠檬酸钠 明胶 抗坏血酸体系中Cu(Ⅱ )、Cd(Ⅱ )、Ni(Ⅱ )和Co(Ⅱ )的络合物吸附波 ,建立了同时、快速测定锌电解溶液中这些痕量元素的新方法。Cu(Ⅱ )、Cd(Ⅱ )、Ni(Ⅱ )和Co(Ⅱ )分别在 - 0 44V、- 0 76V、- 1 0 7V和 - 1 2 4V左右产生灵敏的络合物吸附波。信噪比为 3时 ,其检测限分别为 1 0× 1 0 - 8mol/L、1 3× 1 0 - 8mol/L、2 9× 1 0 - 1 0 mol/L和 3 6×1 0 - 1 1 mol/L。铜、镉、镍和钴的浓度分别为 2 0× 1 0 - 8mol/L~ 2 0× 1 0 - 5 mol/L、3 0× 1 0 - 8mol/L~ 3 0× 1 0 - 5mol/L、5 4× 1 0 - 1 0 mol/L~ 5 4× 1 0 - 7mol/L和 6 8× 1 0 - 1 1 mol/L~ 6 8× 1 0 - 8mol/L时 ,与相应峰电流之间有良好的线性关系。方法已用于锌电解液中铜、镉、镍和钴的快速同时测定 ,相对标准偏差分别小于或等于 4 7%、5 1 %、4 9%和 5 3 %。 相似文献
3.
In this work, methodologies were developed to determine aluminum (Al), cadmium chromium and lead in drinking water by electrothermal atomic absorption spectrometry using permanent modifiers. No use of modifier, iridium, ruthenium, rhodium and zirconium (independently, 500 μg) were tested to each one analyte through the pyrolysis and atomization temperatures curves. As the matrix is very simple, did not had occurred problems with the background for all metals. The best results obtained for cadmium and chromium was with the use of rhodium permanent modifier. For lead and aluminum, the best choice was the use of zirconium. The selection for the modifier took into account the sensitivity, form of the absorption pulse and low atomization temperature (what contributes to elevate the useful life of the graphite tube). For aluminum using zirconium permanent, the best pyrolysis and atomization temperatures were respectively, of 1000 and 2500 °C with a characteristic mass (1% of absorbance, mo) of 19 pg (recommended of 20 pg). For cadmium, with use of rhodium the best temperatures for the pyrolysis and atomization were respectively of 400 and 1100 °C, with a symmetrical peak and with a mo of 1.0 pg (recommended of 1.0 pg). For chromium with rhodium permanent, the best temperatures for pyrolysis and atomization were respectively of 1000 and 2200 °C, with symmetrical peak and mo of 5.3 pg (recommended of 5.5 pg). For lead with zirconium permanent, the best temperatures for pyrolysis and atomization were of 700 and 2400 °C, with symmetrical peak and with mo of 30 pg (recommended of 20 pg). Water samples spiked with each one of the metals in four different levels inside of the acceptable values presented recoveries always close to 100%. The detection limits were of 0.1 μg l−1 for cadmium; 0.2 μg l−1 for chromium; 0.5 μg l−1 for lead and 1.4 μg l−1 for aluminum. 相似文献
4.
In this work, a new method based on dispersive liquid–liquid microextraction (DLLME) preconcentration using tetrachloromethane (CCl4) as extraction solvent was proposed for the spectrophotometric determination of cadmium and copper in water and food samples. The influence factors relevant to DLLME, such as type and volume of extractant and disperser solvent, concentration of chelating reagents, pH, salt effect, were optimized. Under the optimal conditions, the limits of detection for cadmium and copper were 0.01 ng/L and 0.5 μg/L, with enhancement factors (EFs) of 3458 and 10, respectively. The tremendous contrast of EFs could come from the different maximum absorption wavelength caused by the different extraction acidity compared with some conventional works and the enhancement effect of acetone used as dilution solvent during the spectrophotometric determination. The proposed method was applied to the determination of water and food samples with satisfactory analytical results. The proposed method was simple, rapid, cost-efficient and sensitive, especially for the detection of cadmium. 相似文献
5.
6.
Metal exchange reactions of acetylacetonate complexes with Cd(II), Cu(II) and Zn(II) ions were investigated by using cadmium and copper ion selective electrodes. Changes in the electrode potential and pH of the solutions were monitored upon adding the pertinent metal Zn(II) of the acetylacetonate (AA) complexes. In the reverse system in which a stable Cu-AA complex exists in the solution prior to adding a secondary metal ion (Cd(II) or Zn(II)), no Cu(II) was replaced by either ion. In the systems containing Cd(II) and Zn(II) as a complexed form with AA or as free ions, the exchange reactions were not explained by considering the equilibrium stability constants of the Cd-AA and Zn-AA complexes. 相似文献
7.
An anodic stripping voltammetric method has been developed for determination of cadmium, lead, copper and zinc in acetic acid extract of glazed ceramic surfaces. An aliquot of 4% (v/v) acetic acid solution was kept in a ceramic ware for 24 h in the dark, then 10 mL of the extracted solution was placed in a voltammetric cell. The solution was purged with oxygen free nitrogen gas for 3 min before deposition of the metals was carried out by applying a constant potential of −1.20 V versus Ag/AgCl to the hanging mercury drop electrode (HMDE) for 45 s. A square wave waveform was scanned from −1.20 to 0.15 V and a voltammogram was recorded. A standard addition procedure was used for quantification. Detection limits of 0.25, 0.07, 2.7 and 0.5 μg L−1 for cadmium, lead copper and zinc, respectively, were obtained. Relative standard deviations for 11 replicate determinations of 100 μg L−1 each of all the metals were in the range of 2.8-3.6%. Percentage recoveries obtained by spiking 50 μg L−1 of each metal to the sample solution were in the range of 105-113%. The method was successfully applied to ceramic wares producing in Lampang province of Thailand. It was found that the contents of cadmium, lead, copper and zinc released from the samples were in the range of <0.01-0.16, 0.02-0.45, <0.14 and 0.28-10.36 μg dm−2, respectively, which are lower than the regulated values of the Thai industrial standard. The proposed method is simpler, more convenient and more sensitive than the standard method based on FAAS. 相似文献
8.
An evaluation of the non-boiling evaporation technique for the preconcentration of Pb, Cd, Cu, Zn at the pg g?1 level in water samples is presented. Various improvements were made to allow efficient control of contamination problems at these extremely low concentrations. They include the choice of FEP Teflon for the evaporation containers and the use of sophisticated cleaning, ageing and pre-conditionning procedures. Detailed calibration graphs were obtained down to the sub-pg g?1 level by processing ultra-low concentration standards. This technique was then applied to the determination of these four metals in snow samples collected in Greenland and Antarctica. 相似文献
9.
Luiz Frederico Rodrigues Julio Cezar Paz de Mattos Valderi Luiz Dressler Dirce Pozebon Érico Marlon de Moraes Flores 《Spectrochimica Acta Part B: Atomic Spectroscopy》2007
Trace impurities of Cd, Cu and Pb were determined in alumina based catalysts using direct solid sampling graphite furnace atomic absorption spectrometry (DSS-GF AAS). The analyzed catalysts are widely used in petrochemical processes. The following analytical parameters were evaluated: pyrolysis and atomization temperatures, feasibility of calibration with aqueous solutions, the necessity for palladium as chemical modifier and the sample mass introduced into the atomizer. Test samples between 0.05 and 8.5 mg were used. Palladium was investigated as chemical modifier but no improvement in analytical performance was obtained and its use was considered unnecessary for all elements. The results obtained by DSS-GF AAS were compared with those of inductively coupled plasma optical emission spectrometry (ICP OES) and also with conventional solution analysis by GF AAS (Sol-GF AAS). Characteristic masses were 1.4, 9 and 20 pg, for Cd, Cu and Pb, respectively. Using DSS-GF AAS the relative standard deviation was always less than 10% and the results agreed with those obtained by Sol-GF AAS and ICP OES. Calibration using aqueous solutions showed good linearity within the working range (R2 better than 0.99). Limits of detection (3σ, n = 10) for Cd, Cu and Pb using the proposed procedure were 0.2, 22, and 1.2 ng g− 1, respectively. 相似文献
10.
An aluminum hydroxide coprecipitation method for the determination of cadmium, copper and lead by flame atomic absorption spectrometry in aqueous solutions, seawater and mineral water samples has been investigated. The coprecipitation conditions, such as the effect of the pH, the amount of carrier element, the effect of possible matrix ions and the time were examined in detail for the studied elements. It was found that cadmium, copper and lead are co-precipitated quantitatively (≥95%) with aluminum hydroxide at pH 7 with low R.S.D. values of around 2 to 3%. Detection limits (38) were 6 ng ml−1 for Cd, 3 ng ml−1 for Cu and 16 ng ml−1 for Pb. The method proposed was validated by the analysis of HPS 312205 seawater standard reference material and spiked mineral water samples. 相似文献
11.
Three mixed-ligand CuII complexes bearing iminodiacetato (ida) and N-heterocyclic ligands, namely, [Cu2(ida)2(bbbm)(H2O)2] · H2O (1), [Cu2(ida)2(btx)(H2O)2] · 2H2O (2) and [Cu2(ida)2(pbbm)(H2O)2] · H2O · 3CH3OH (3) (bbbm = 1,1′-(1,4-butanediyl)bis-1H-benzimidazole, btx = 1,4-bis(1,2,4-triazol-1-ylmethyl)benzene, pbbm = 1,1′-(1,3-propanediyl)bis-1H-benzimidazole), in addition to three fcz-based CuII complexes, namely, {[Cu(fcz)2(H2O)2] · 2NO3}n (4), {[Cu(fcz)2(H2O)] · SO4 · DMF · 2CH3OH · 2H2O}n (5) and {[Cu(fcz)2Cl2] · 2CH3OH}n (6) (fcz = 1-(2,4-difluorophenyl)-1,1-bis[(1H-1,2,4-triazol-l-yl) methyl]ethanol) have been prepared according to appropriate synthetic strategies with the aim of exploiting new and potent catalysts. Single crystal X-ray diffraction shows that 1 and 2 possess similar binuclear structures, 3 features a 2D pleated network, and 4 exhibits a 1D polymeric double-chain structure. Complexes 1-6 are tested as catalysts in the green catalysis process of the oxidative coupling of 2,6-dimethylphenol (DMP). Under the optimized reaction conditions, these complexes are catalytically active by showing high conversion of DMP and high selectivity of PPE. The preliminary study of the catalytic-structural correlations suggests that the coordination environment of the copper center have important influences on their catalytic activities. 相似文献
12.
The concentrations of mercury (Hg), cadmium (Cd) and lead (Pb) at various exposure periods were determined in the gill, kidney, liver and muscle of common carp (Cyprinus carpio L.) co‐exposed to 1.0 µg ml?1 each of Cd2+, Hg2+ and Pb2+ for up to 10 days. Metallothionein fractions (MTs) in these organs were characterized using the hyphenated technique of size‐exclusion chromatography (SEC) and inductively coupled plasma mass spectrometry (ICP‐MS). After 10 days of exposure, maximum toxic metal concentrations of Hg, Cd and Pb were 10.7 (gill), 0.145 (kidney) and 0.112 µg g?1dryweight (gill), respectively. The pattern of accumulation of Hg and Pb was in the order gill > kidney > liver > muscle. In the case of Cd, accumulation was in the order kidney > gill > liver > muscle. Cd and Hg binding MTs were significantly induced in the gill, kidney and liver of all the exposure groups in comparison with the control group (p < 0.05), and the amounts of them increased with the longer exposure time. Despite the higher intracellular Hg concentration and the stronger Hg? SH binding affinity, the amount of Cd‐binding MTs was much higher than that of Hg‐binding MTs. The results indicate that MT synthesis in these organs was clearly metal‐specific. MTs in gill may be used as a bio‐marker to detect the metal pollution caused by Hg and Cd. Zinc and copper binding MTs in the organs of the exposed fish were also increased. This may be due to the MTs' important role in the homeostatic regulation of essential metals and their protective role against the acute toxicity of non‐essential metals. Even though there was considerable accumulation of lead in the organs of the exposed fish, Pb‐binding MT synthesis was non‐significant. Copyright © 2006 John Wiley & Sons, Ltd. 相似文献