首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Young-Su Lee  Han-Ill Yoo   《Solid State Ionics》2002,150(3-4):373-382
Current (I)–voltage (V) characteristic under oxygen potential gradients was experimentally examined on single crystal BaTiO3−δ in its mixed ion/electron/hole regime at 1000 °C. The variation of I vs. V appears similar to that of an n/p junction, but with the limiting slope (dI/dV) approaching the maximum and minimum possible equilibrium conductances in the given oxygen potential gradient as increasing forward and reverse bias, respectively. This characteristic has been precisely traced theoretically by using the partial ionic and electronic conductivities of BaTiO3−δ as measured against uniform oxygen chemical potential in equilibrium state. The nonlinear characteristic is attributed to the redistribution of oxygen chemical potential that is caused by a non-vanishing gradient of the ionic transference number of the oxide under the given oxygen potential gradient. It is demonstrated that the bulk transport properties of a mixed conductor may be tailored by terminal voltage in a chemical potential gradient.  相似文献   

2.
Formation of the La2Cu1−xCoxO4+δ solid solutions with orthorhombic K2NiF4-type structure was found to be in the range of 0≤x≤0.30 at temperatures above 1270 K. Incorporating cobalt into the copper sublattice of lanthanum cuprate leads to increasing oxygen hyperstoichiometry and decreasing electrical conductivity. Thermal expansion coefficients of the La2Cu1−xCoxO4+δ (x=0.02–0.30) ceramics at 470–1100 K were calculated from the dilatometric data to vary in the range (12.2–13.2)×106 K1. Studying the dependence of oxygen permeation fluxes through La2Cu(Co)O4+δ on the membrane thickness demonstrated that the oxygen transport at the thickness values below 1 mm is limited by both surface exchange rate and bulk ionic conductivity. Oxygen permeability of the La2Cu1−xCoxO4+δ solid solutions was ascertained to increase with cobalt concentration at x=0.02–0.10 and to decrease with further dopant additions, indicating a participation of interstitial oxygen in the ionic transport.  相似文献   

3.
La0.67Sr0.33MnO3−δ (LSMO) and Pr0.7Ca0.3MnO3−δ (PCMO) multilayer epitaxial films, which were fabricated with different LSMO and PCMO layer thickness on LaAlO3 single crystal substrates of (0 0 1) orientation by a direct current magnetron sputtering technique, were studied further, after the structure, magnetoresistance effect and magnetic properties of LSMO/PCMO/LSMO (LPL) trilayer epitaxial films were systemically studied. The superlattice structures of multilayer films were observed according to the diffraction peaks of X-ray diffraction patterns at small angles. The metal–insulator transition temperature (TP) and peak resistivity (ρmax) obviously changed when we altered the thickness of PCMO middle layer and the intra-field related with the thickness of those layers and their interaction. Considering the effect of the distribution of electrical field and current, and the interaction among the layers of LSMO and PCMO, an effective fact n* was introduced to replace n (the number of layer). All the calculated values of ρ (the resistivity of multilayer films) accorded with the experimental values.  相似文献   

4.
The polarized Raman spectra of Nd1+xBa2−xCu3O7−δ (−0.023≤x≤0.107) and Pr1+xBa2−xCu3O7−δ (0.01≤x≤0.15) single crystals have been investigated. It was found that the Cu(2) Ag mode softens by 6 cm−1 in Nd 1:2:3 and 4 cm−1 in Pr 1:2:3 as x increases. These frequency shifts cannot be explained by the change in the relevant bond lengths due to Nd(Pr)-substitution for Ba. The variations with x of the two low frequency modes may be affected by change of their hybridization and/or change of their force constants. The linewidths of Ba mode in Pr 1:2:3 are broader than those in Y 1:2:3. This result suggests that the Pr substitution on Ba sites occurred even in a very small value of x. In x(yy) geometry the relative intensity of the Ba and O(4) modes in Nd 1:2:3 is greater than those in Pr 1:2:3. The difference between Nd 1:2:3 and Pr 1:2:3 in the relative intensity of the Ba and O(4) modes may be produced by the chains.  相似文献   

5.
Cation deficient spinels NixMn3−x3δ/4O4+δ (0≤x≤1) have been prepared by thermal decomposition of mixed oxalates Nix/3Mn(3−x)/3(C2O4nH2O in air at 623 K. They have been characterised by temperature programmed reduction (TPR) under H2, the reaction being followed by gravimetric and powder X-ray diffraction measurements. It has been shown that TPR proceeds in several steps. The first steps correspond to the loss of nonstoichiometric oxygen leading to the formation of a stoichiometric oxide. During the following stages the manganese cations are reduced, causing the spinel structure to be destroyed, and the formation of solid solution of NiO in a cubic MnO. Subsequently, Ni2+ cations undergo a reduction to metallic nickel, and, finally, a mixture of nonstoichiometric MnO1−δ and metallic nickel is formed. These oxides contain a high level of vacancies which vary with the nickel content with a maximum of δ≈1 near x=0.6. This nonstoichiometry is ascribed both to the presence of Ni3+ and excess of Mn4+.  相似文献   

6.
A study of deuterium conductivity and diffusion in the oxide perovskite La0.9Sr0.1YO3−δ is presented in this work. Deuterium ions were implanted into La0.9Sr0.1YO3−δ (50 keV, 1×1016 atoms/cm2) and the corresponding deuterium depth profile was determined by SIMS and compared with a Monte Carlo simulation (TRIM96). This implant was used as a standard for the determination of deuterium concentration in a La0.9Sr0.1YO3−δ sample pre-treated in D2O atmosphere. In this way, it was fully confirmed that La0.9Sr0.1YO3−δ incorporates water at high temperatures. The conductivity of La0.9Sr0.1YO3−δ was measured in D2O atmosphere and compared with other proton (deuteron) conductors. Concentration and conductivity data were used in conjunction to estimate the deuterium diffusivity and the constant of reaction of (heavy) water incorporation into LaYO3. Some comments on the catalytic activity of this oxide are made.  相似文献   

7.
The equilibrium oxygen content as a function of the temperature and oxygen pressure was measured for the solid solution YBa2Cu3−xCoxO6+δ, where x=0, 0.2, 0.4, 0.6, 0.8, by using coulometric titration in the temperature range 600–850°C and oxygen pressures between 10−5 and 1.0 atm. The change in the partial molar enthalpy and entropy of the intercalated oxygen was determined at different oxygen and cobalt contents. The oxygen chemical diffusion was studied by thermogravimetric relaxation in the oxygen-controlled atmosphere. The thermodynamic data were employed to determine how the chemical diffusion coefficient, the thermodynamic factor and the random-diffusion coefficient depend on oxygen content in specimens with different cobalt concentration. The oxygen intercalation thermodynamics and diffusivity results provide evidence of ordering phenomena on a microscopic scale in the basal plane of the tetragonal solid solution YBa2Cu3−xCoxO6+δ. A model for the oxygen diffusion is suggested to explain the large difference between the random and tracer diffusion coefficients in YBa2Cu3O6+δ  相似文献   

8.
Lithium insertion to distorted ReO3-type metastable solid solution NbxW1−xO3−x/2 (0≤x<0.25) has been studied by chemical and electrochemical methods. In the course of lithium insertion into tetragonal compounds, transition to a cubic phase was found to occur in the region where values of y (in LiyNbxW1−xO3−x/2) fall between 0.2 and 0.3, and the phase transition was found to depend on the conditions of the reaction. Changes in OCV and lattice parameters in tetragonal region (y<0.2) were discussed from the viewpoint of the ordering of lithium ions. Also, the component diffusion coefficient of lithium in tetragonal compounds Li0.1NbxW1−xO3−x/2 (0≤x≤0.23) was found to increase with niobium content when x≤0.10, and to saturate at 4×10−9 cm2/s.  相似文献   

9.
10.
The LaGa1−xyCoxMgyO3−δ solid solutions with rhombohedrally-distorted perovskite structure were ascertained to form in the concentration range of 0≤y≤0.10 at x=0.60 and 0≤y≤0.20 at x=0.35–0.40. Increasing cobalt content results in increasing electrical conductivity and thermal expansion of the perovskites. Thermal expansion coefficients of the LaGa1−xyCoxMgyO3−δ ceramics were calculated from the dilatometric data to vary in the range of 12.4–19.8×10−6 K−1 at 300–1100 K. Doping La(Ga,Co)O3−δ solid solutions with magnesium leads to increasing oxygen nonstoichiometry, electronic and oxygen ionic conductivity. Oxygen permeation fluxes through LaGa1−xyCoxMgyO3−δ membranes were found to be limited by the bulk ionic conduction and to increase with magnesium concentration, being essentially independent of cobalt content.  相似文献   

11.
The electrical property of (La1−xSrx)1−z(Al1−yMgy)O3−δ (LSAM; x≤0.3, y≤0.15 and z≤0.1) was measured using the DC four-probe method as a function of temperature (500–1000°C) and oxygen partial pressure (1–10−22 atm). Among LSAMs, (La0.9Sr0.1)AlO3−δ showed the highest ionic conductivity, σi=1.3×10−2 S cm−1 at 900°C. A simultaneous substitution at A and B sites or A site deficiency is expected to create larger oxygen vacancy and higher ionic conductivity. However, it showed a negative effect. The effect of the vacancy increase did not effect monotonously the ionic conductivity. It was found that the concentration of oxygen vacancy, [VO], influences not only the oxide ion conductivity, σi, but also the mobility, μv, of [VO]. These properties exhibit a maximum at around [VO]=0.05. With the increase in [VO], the activation energy, Ea, of the ionic conduction dropped from 1.8 to ca. 1.0 eV at [VO]=0.05 and became almost constant at [VO]>0.05. The dependency of the pre-exponential term, μ0v, and Ea on [VO] was analyzed and their effect on μv and σi was discussed with respect to crystal structure and defect association. It was estimated that the crystal structure mainly governs these properties. The effect of defect association could not be ignored but is considered to be a complicated correlation.  相似文献   

12.
The maximum solid solubility of gallium in the perovskite-type La1−xSrxFe1−yGayO3−δ (x=0.40–0.80; y=0–0.60) was found to vary in the approximate range y=0.25–0.45, decreasing when x increases. Crystal lattice of the perovskite phases, formed in atmospheric air, was studied by X-ray diffraction (XRD) and neutron diffraction and identified as cubic. Doping with Ga results in increasing unit cell volume, while the thermal expansion and total conductivity of (La,Sr)(Fe,Ga)O3−δ in air decrease with gallium additions. The average thermal expansion coefficients (TECs) are in the range (11.7–16.0)×10−6 K−1 at 300–800 K and (19.3–26.7)×10−6 K−1 at 800–1100 K. At oxygen partial pressures close to atmospheric air, the oxygen permeation fluxes through La1−xSrxFe1−yGayO3−δ (x=0.7–0.8; y=0.2–0.4) membranes are determined by the bulk ambipolar conductivity; the limiting effect of the oxygen surface exchange was found negligible. Decreasing strontium and gallium concentrations leads to a greater role of the exchange processes. As for many other perovskite systems, the oxygen ionic conductivity of La1−xSrxFe1−yGayO3−δ increases with strontium content up to x=0.70 and decreases on further doping, probably due to association of oxygen vacancies. Incorporation of moderate amounts of gallium into the B sublattice results in increasing structural disorder, higher ionic conductivity at temperatures below 1170 K, and lower activation energy for the ionic transport.  相似文献   

13.
New Scheelite-related solid solutions of the compositions Nax/2Bi1−x/2MoxV1−xO4 (0≤x≤1) and Bi1−x/3 MoxV1−xO4(0≤x≤0.2) have been synthesised by the substitution of Na and Mo at the A and B sites respectively of the ABO4 type ferroelastic BiVO4. The phases were characterised using chemical analysis, powder X-ray diffraction, scanning electron microscopy, EDAX, and Raman spectroscopy. While almost a continuous solid solution is obtained for the series Nax/2Bi1−x/2MoxV1−xO4, the absence of Na at the A-site results only in a narrow stability region for the other series, Bi1−x/3 MoxV1−xO4 where 0≤x≤0.2. Raman spectra of selected samples at room temperature also suggest that vanadium and molybdenum atoms are disordered at the tetrahedral sites.  相似文献   

14.
Y. Zheng  M. Kusakabe  H. Okazaki   《Solid State Ionics》1998,110(3-4):263-267
Ionic conductivity, σi, of dilute pseudobinary alloys (CuBr)1−x(Cu2Se)x (x≤0.1) in their γ-phase has been measured by an ac method. The increase of the ionic conductivity propertional to x has been observed, which is attributed to interstitial ions brought by Cu2Se dissolved in CuBr. It is found that the temperature dependence of mobility of interstitial ions, μ, evaluated by the relation Δσi/x= (k is a constant) is bent at the temperature corresponding to the extrinsic–intrinsic transition of the based material CuBr.  相似文献   

15.
Pr concentration dependence of the superconducting transition temperature Tc in the Ho1−xPrxBa2Cu3O7−δ system is determined from measurements of DC electrical resistance. This dependence coincides with that for the parallely studied Y1−xPrxBa2Cu3O7−δ reference system. Both systems have the same value of the critical concentration xc=0.58, in accordance with nearly equal ionic radii of Ho3+ and Y3+ ions. It has been shown that the Tc(x) curve can be described with a single mechanism based on a decreasing number of sheet holes trapped by PrIV-ions, if one takes also into account that the number of these ions changes with x.  相似文献   

16.
The spectroscopic properties of Er3+/Yb3+ co-doped Bi2O3–B2O3–WO3 (BBW) glasses were analyzed and discussed. The effect of WO3 content on the absorption spectra, the Judd–Ofelt parameters Ωt (t=2, 4, 6), emission spectra and the lifetime of the 4I13/2 level and the quantum efficiency of Er3+:4I13/24I15/2 transition were also investigated. With the substitution of WO3 for B2O3, the measured lifetime of the 4I13/2 level and the quantum efficiency of Er3+:4I13/24I15/2 transition increase from 0.98 to 1.31 ms and from 38.2% to 49.2%, respectively. The effective width of emission band and the emission cross-section both decrease slightly. And the emission spectra is analyzed via the different curve (σeσa) of BBW glasses, the influence of OHis also discussed.  相似文献   

17.
The production rate for η′ in ppppη′ at rest is calculated in a covariant one boson exchange model, previously applied to study π0 and η production in NN collisions. The transition amplitudes for the elementary BN → η′N processes with B being the meson exchanged (B = π, σ, η, , ω and a0) are taken to be the sum of s- and u-channels with a nucleon in the intermediate states, and an a0 meson pole in a t-channel. The couplings of the η′ to hadrons are a factor 0.4 weaker than the respective η-hadron couplings, as suggested by a quark model and a singlet-octet mixing angle θ = −23°. The model reproduces near threshold cross sections for the quasielastic processes πpnη(η′) and ppppη(η′) reactions.  相似文献   

18.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

19.
Germanium and iron co-doped SrCoO2.5+δ was investigated in terms of phase stability, oxygen permeability and electrical conductivity. The favorable high-temperature cubic structure of SrCoO2.5+δ was stabilized to lower temperatures by co-doping Ge (10 mol%) and Fe (10 mol%) that substituted for Co, which however could not be achieved by doping Ge (20 mol%) alone. In contrast to SrCo0.8Ge0.2O2.5+δ sample which showed a sharp decrease in oxygen permeability at temperature of 875 °C upon cooling, SrGe0.1Co0.8Fe0.1O3−δ sample remained well-permeable to oxygen at lower temperatures down to at least 820 °C; an abrupt change in electrical conductivity in SrCo0.8Ge0.2O2.5+δ also occurred accompanying the phase transition. The oxygen permeation flux for SrGe0.1Co0.8Fe0.1O3−δ increased significantly with the decrease of the membrane thickness, indicating the transport of oxygen ions in the bulk of the membrane as the rate-limiting step.  相似文献   

20.
To study a behavior of the thermal conductivity near Tc specific heat and thermal diffusivity of the YBa2Cu3O7−δ high-Tc ceramics were simultaneously measured. Close to Tc = 92.30 K the thermal diffusivity and the thermal conductivity discovered minima and the specific heat – maximum. Quantitative analysis of the influence of thermodynamical fluctuations showed the same power laws with Gaussian exponent equal to 0.5 and existing of crossover from the 3D Gaussian to 3D XY critical behavior in the specific heat and thermal conductivity at the approach to Tc. To explain the minimum in thermal conductivity at Tc we propose a mechanism of scattering of phonons on the superconducting fluctuations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号