首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
It has been shown that, in polycrystalline thin PZT films with the Zr/Ti = 0.535/0.465 ratio of ions in octahedral positions of the perovskite structure, the permittivity and the pyroelectric and piezoelectric responses increase with increasing linear sizes of growth blocks to reach anomalously large values. It has been assumed that the observed effects originate from a combination of two factors, namely, the possible presence of the monoclinic phase and a well-developed domain structure in the films.  相似文献   

2.
Partially textured PbxBa1 ? xNb2O6 ceramics, with compositions around the morphotropic phase boundary, were obtained by the hot forging technique. Scanning electron microscopy revealed that the grains were arranged with their lengthwise direction preferentially in the direction of the forging. From the differences of the X ray diffraction profiles between the samples analyzed in the direction of forging and those analyzed in the pressing direction it was possible to confirm the crystallographic growth habit of the PBN ceramics for the tetragonal and orthorhombic symmetry compositions. The identification of a mixture of tetragonal and orthorhombic symmetry phases in a whole range of studied compositions was also possible. The phase transformation around the morphotropic phase boundary (in this case, tetragonal (4mm) to orthorhombic (m2m)) could be analyzed through the direction change of the polarization vector in partially textured PBN ceramics.  相似文献   

3.
In the present work, lanthanum nickel oxide (LNO) thin films were prepared by the sol-gel method. Microstructures of the films were tailored by changing sol concentration so as to investigate the effect of grain boundary on the transport properties of electrons in the polycrystalline LNO films. Based on the temperature dependence of the resistivity and the magnetic field dependence of the magnetoresistance (MR) at various temperatures, the factors that dominate the transport behavior in the polycrystalline LNO films were explored in terms of weak localization and strong localization. The results show that the grain boundary has a significant influence on the transport behavior of the electrons in LNO films at a low-temperature region, which can be captured by a variable-range hopping (VRH) model. The increase of metal–insulator (M–I) transition temperature is ascribed to Anderson localization in grain boundary. At a high-temperature region, electron–electron scattering and electron–phonon scattering predominates in the films. In this case, the existence of more grain boundary shows a minor effect on the transport behavior of the electrons but elevates the residual resistivity of the films.  相似文献   

4.
The substrate temperature(T_s)and N_2 partial pressure(P_(N2))dependent optical and electrical properties of sputtered InGaZnON thin films are studied.With the increased T_s and P_(N2),the thin film becomes more crystallized and nitrified.The Hall mobility,free carrier concentration(Ne),and electrical conductivity increase with the lowered interfacial potential barrier during crystal growing.The photoluminescence(PL)intensity decreases with the increased Ne.The band gap(Eg)narrows and the linear refractive index(n1)increases with the increasing concentration of N in the thin films.The Stokes shift between the PL peak and absorption edge decreases with Eg.The n1,dispersion energy,average oscillator wavelength,and oscillator length strength all increase with n1.The single oscillator energy decreases with n1.The nonlinear refractive index and third order optical susceptibility increase with n1.The Seebeck coefficient,electron effective mass,mean free path,scattering time,and plasma energy are all Ne dependent.  相似文献   

5.
Thin SnS films are of interest for optoelectronics. The influence of the preparation modes on the microstructure and electrical properties of thin SnS films obtained by the hot-wall method on substrates made of pure glass and glass with a molybdenum sublayer has been investigated. It has been established that the formation of SnS films with two texture types (111) and (010) is possible on the substrates made of pure glass, depending on the mode. The resistivity and the temperature coefficient of thermoelectric power of the SnS films on glass vary in the range from 12 to 817 Ω cm and from 37 to 597 μV/K, respectively, depending on the preparation modes. The activation energy is 0.11–0.12 eV.  相似文献   

6.
The magnetic properties of thin Permalloy films have been the subject of many investigations, but the work on their electrical properties is very limited [1]. By observing the change in electrical resistance with temperature the structural transformations taking place during the annealing of the condensates can be inferred.The authors of [1] did not undertake a detailed study of the electrical properties of Permalloy. They used Permalloy 79NMA in their investigation, and the dependence of the change in electrical resistance on the temperature of annealing in a magnetic field enabled them to reach conclusions about the nature of the uniaxial anisotropy of thin films.In the present work a detailed study has been made of the electrical resistance of Permalloy films in relation to the temperature of the substrate during evaporation and annealing; the temperature coefficient of resistance (TCR) has also been studied.  相似文献   

7.
The pulsed laser deposition (PLD) technique is used to deposit Gallium doped zinc oxide (GZO) thin films on glass substrates at 250 with different Gallium (Ga) doping concentration of 0, 1.0, 3.0 and 5.0%. The influence of Ga doping concentration on structure, chemical atomic compositions, electrical and optical properties was investigated by XRD, XPS, Hall measurement and UV spectrophotometer, respectively. The relationship between electrical properties and Ga doping concentration was clarified by analyzing the chemical element compositions and the chemical states on the GZO films. It is found that the carrier concentrations and oxygen vacancies in the GZO films increase with increasing Ga doping concentration. The lowest resistivity (3.63 × 10−4 Ω cm) and barrier height of grain boundaries (14 mV) were obtained with 3% Ga doping. In particular, we suppose the band gap of 5% Ga doping sample larger than that of 3% Ga doping sample is due to the quantum size effect from the amorphous structure rather than Moss-Burstein shift.  相似文献   

8.
Series of Fe thin films have been prepared by thermal evaporation onto glass and Si(1 0 0) substrates. The Rutherford backscattering (RBS), X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the four point probe techniques have been used to investigate the structural and electrical properties of these Fe thin films as a function of the substrate, the Fe thickness t in the 76-431 nm range and the deposition rate. The Fe/Si samples have a 〈1 1 0〉 for all thicknesses, whereas the Fe/glass grows with a strong 〈1 0 0〉 texture; as t increases (>100 nm), the preferred orientation changes to 〈1 1 0〉. The compressive stress in Fe/Si remains constant over the whole thickness range and is greater than the one in Fe/glass which is relieved when t > 100 nm. The grain size D values are between 9.2 and 30 nm. The Fe/glass films are more electrically resistive than the Fe/Si(1 0 0) ones. Diffusion at the grain boundary seems to be the predominant factor in the electrical resistivity ρ values with the reflection coefficient R greater in Fe/glass than in Fe/Si. For the same thickness (100 nm), the decrease of the deposition rate from 4.3 to 0.3 Å/s did not affect the texture and the reflection coefficient R but led to an increase in D and a decrease in the strain and in ρ for both Fe/glass and Fe/Si systems. On the other hand, keeping the same deposition rate (0.3 Å/s) and increasing the thickness t from 76 to 100 nm induced different changes in the two systems.  相似文献   

9.
Sr2Bi4Ti5O18(SBTi) single layered and Sr2Bi4Ti5O18 /Pb(Zr0.53Ti0.47)O3(SBTi/PZT) bilayered thin films have been prepared on Pt/TiO2/SiO2/Si substrates by pulsed-laser deposition(PLD).The related structural characterizations and electrical properties have been comparatively investigated.X-ray diffraction reveals that both films have crystallized into perovskite phases and scanning electron microscopy shows the sharp interfaces.Both films show well-saturated ferroelectric hysteresis loops,however,compared with the single layered SBTi films,the SBTi/PZT bilayered films have significantly increased remnant polarization(Pr) and decreased coercive field(Ec),with the applied field of 260 kV/cm.The measured Pr and Ec of SBTi and SBTi/PZT films were 7.9 C/cm 2,88.1 kV/cm and 13.0 C/cm 2,51.2 kV/cm,respectively.In addition,both films showed good fatigue-free characteristics,the switchable polarization decreased by 9% and 11% of the initial values after 2.2 10 9 switching cycles for the SBTi single layered films and the SBTi/PZT bilayered films,respectively.Our results may provide some guidelines for further optimization of multilayered ferroelectric thin films.  相似文献   

10.
Electron-diffraction and electron-microscope methods were used to investigate the structure of Cu2Se films of close to stoichiometric composition. It is shown that in polycrystalline and single-crystal films of thickness >400Å at room temperature, the tetragonal modification is stable, which at temperatures above 400°K is transformed into the cubical modification. In thinner films d<400 Å the cubical modification of copper selenide is stable at room temperature. A sharp peak is observed at 400°K on the temperature dependence of the resistance; this is connected with the phase transition. At room temperature, copper selenide is a degenerate p-type semiconductor with carrier concentration 5 · 1022–8 · 1020 cm–3, depending on the thickness of the film.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 90–94, August, 1973.  相似文献   

11.
Bismuth trioxide (Bi2O3) thin films were prepared by dry thermal oxidation of metallic bismuth films deposited by vacuum evaporation. The oxidation process of Bi films consists of a heating from the room temperature to an oxidation temperature (To = 673 K), with a temperature rate of 8 K/min; an annealing for 1 h at oxidation temperature and, finally, a cooling to room temperature. The optical transmission and reflection spectra of the films were studied in spectral domains ranged between 300 nm and 1700 nm, for the transmission coefficient, and between 380 nm and 1050 nm for the reflection coefficient, respectively. The thin-film surface structures of the metal/oxide/metal type were used for the study of the static current-voltage (I-U) characteristics. The temperature of the substrate during bismuth deposition strongly influences both the optical and the electrical properties of the oxidized films. For lower values of intensity of electric field (ξ < 5 × 104V/cm), I-U characteristics are ohmic.  相似文献   

12.
The Fex Pt 100x (10nm) (x=31-51) thin films are fabricated on Si (100) substrates by using magnetron sputtering. The highly ordered L1 0 FePt phase is obtained after post-annealing at 700℃in Fe 47 Pt 53 thin film. The sample shows good perpendicular anisotropy with a square loop and a linear loop in the out-of-plane and the in-plane direction, respectively. The variations of the magnetic domains are investigated in the films when the content value of Fe changes from 31% to 51%.  相似文献   

13.
14.
邓金祥  秦扬  孔乐  杨学良  李廷  赵卫平  杨萍 《中国物理 B》2012,21(4):47202-047202
Cubic boron nitride (c-BN) thin films are deposited on p-type Si wafers using radio frequency (RF) sputtering and then doped by implanting S ions. The implantation energy of the ions is 19 keV, and the implantation dose is between 10 15 ions/cm 2 and 10 16 ions/cm 2 . The doped c-BN thin films are then annealed at a temperature between 400°C and 800 C. The results show that the surface resistivity of doped and annealed c-BN thin films is lowered by two to three orders, and the activation energy of c-BN thin films is 0.18 eV.  相似文献   

15.
Procedure and apparatus are described for measuring the resistivity, free-charge density, and free-charge mobility in thin semiconducting films. The method is based on the dependence of the power transmitted to a microwave transmission line on the density and mobility of free charge in a semiconductor in the line insulated from electrodes on both sides by dielectric layers. Experimental results are reported.Translated from Izvestiya VUZ. Fizika, No. 5, pp. 105–109, May, 1971.  相似文献   

16.
We have derived, following the recent theoretical calculation of the electrical conductivity of multi-layered metallic thin films, a general solution of the electrical conductivity for those films with grain structures, since those structures give important contributions to the electrical transport properties of polycrystalline thin film. The temperature coefficients of resistivity have also been obtained.  相似文献   

17.
ZnO thin films of different thicknesses were prepared by thermal evaporation on glass substrates at room temperature. Deposition process was carried out in a vapour pressure of about 5.54 × 10 − 5 mbar. The substrate–target distance was kept constant during the process. By XRD and AFM techniques the microstructural characteristics and their changes with variation in thickness were studied. Electrical resistivity and conductivity of samples vs. temperature were investigated by four-probe method. It was shown that an increase in thickness causes a decrease in activation energy.  相似文献   

18.
19.
The pressure-induced shift of impurity levels under hydrostatic compression (?1.9 × 10?2 meV/MPa) at T = 300 K has been derived from measurements of the behavior with temperature of the electrical resistance of thin polycrystalline SmS films on glass substrates at different pressures. The difference between the pressure-induced shifts of impurity levels in thin films and single crystals has been attributed to the effect of elastic properties of the substrate material. It has been shown that the semiconductor-metal phase transition in SmS films does not occur at pressures of up to 1000 MPa, because the impurity levels triggering the mechanism of phase transition at such pressures are not in the conduction band.  相似文献   

20.
Magnetron sputtered polycrystalline ZnO thin films were implanted using Al, Ag, Sn, Sb and codoped with TiN in order to improve the conductivity and to attempt to achieve p-type behaviour. Structural and electrical properties of the implanted ZnO thin films were examined with X-ray diffractometry (XRD), scanning electron microscopy (SEM), secondary ion mass spectrometry (SIMS), atomic force microscopy (AFM) and conductivity measurements. Depth profiles of the implanted elements varied with the implant species. Implantation causes a partial amorphisation of the crystalline structure and decreases the effective grain size of the films. One of the findings is the improvement, as a consequence of implantation, in the conductivity of initially poorly conductive samples. Heavy doping may help for the conversion of conduction type of ZnO thin films. Annealing in vacuum mitigated structural damage and stress caused by implantation, and improved the conductivity of the implanted ZnO thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号