首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The full series of lanthanide ions (except the radioactive promethium and the S-state gadolinium) has been incorporated into the C-terminal calcium binding site of the dicalcium protein calbindin D(9k). A fairly constant coordination environment is maintained throughout the series. At variance with several lanthanide complexes with small chelating ligands investigated in the past, the large protein moiety provides a large number of NMR signals whose hyperfine shifts can be exclusively ascribed to pseudocontact shifts (PCS). The chemical shifts of 1H and 15N backbone and side chain amide NH groups were accurately measured through HSQC experiments. 1097 PCS were estimated from these by subtracting the diamagnetic contributions measured on HSQC spectra of either the 4f(0) lanthanum(III) or the 4f(14) lutetium(III) derivatives and used to define a quality factor for the structure. The differences in diamagnetic chemical shifts between the two diamagnetic blanks were relatively small, although some were not negligible especially for the nuclei closest to the metal center. These differences were used as a tolerance for the PCS. The magnetic susceptibility tensor anisotropies for each paramagnetic lanthanide ion were obtained as the result of the solution structure determination performed by using the NOEs of the cerium(III) derivative and the PCS of all lanthanides simultaneously. This set of reliable magnetic data permits an experimental assessment of Bleaney's theory relative to the magnetic properties for an extended series of lanthanide complexes in solution. All of the obtained tensors show some rhombicity, as could be expected from the lack of symmetry of the protein environment. The directions of the largest magnetic susceptibility component for Ce, Pr, Nd, Sm, Tb, Dy, and Ho and of the smallest magnetic susceptibility component for Eu, Er, Tm, and Yb were found to be all within 15 degrees from their average (within 20 degrees for Sm), confirming the essential similarity of the coordination environment for all lanthanides. Bleaney's theory is in excellent qualitative agreement with the observed pattern of axial anisotropies. Its quantitative agreement is substantially better than that suggested by previous analyses performed on more limited sets of PCS data for small lanthanide complexes, the so-called crystal field parameter varying only within +/-30% from one lanthanide to another. These variations are even smaller (+/-15%) if a reasonable T(-3) correction is taken into consideration. A knowledge of magnetic susceptibility anisotropy properties of lanthanides is essential in determining the self-orienting properties of lanthanide complexes in solution when immersed in magnetic fields.  相似文献   

2.
Complexes between the tetrapyridyl pendant-armed macrocyclic ligand (L) and the trivalent lanthanide ions have been synthesized, and structural studies have been made both in the solid state and in aqueous solution. The crystal structures of the La, Ce, Pr, Gd, Tb, Er, and Tm complexes have been determined by single-crystal X-ray crystallography. In the solid state, all the cation complexes show a 10-coordinated geometry close to a distorted bicapped antiprism, with the pyridine pendants situated alternatively above and below the main plane of the macrocycle. The conformations of the two five-membered chelate rings present in the complexes change along the lanthanide series. The La(III) and Ce(III) complexes show a lambdadelta (or deltalambda) conformation, while the complexes of the heavier lanthanide ions present lambdalambda (or deltadelta) conformation. The cationic [Ln(L)]3+ complexes (Ln = La, Pr, Eu, Tb, and Tm) were also characterized by theoretical calculations at the density-functional theory (DFT) B3LYP level. The theoretical calculations predict a stabilization of the lambdalambda (or deltadelta) conformation on decreasing the ionic radius of the Ln(III) ion, in agreement with the experimental evidence. The solution structures show a good agreement with the calculated ones, as demonstrated by paramagnetic NMR measurements (lanthanide induced shifts and relaxation rate enhancements). The 1H NMR spectra indicate an effective D2 symmetry of the complexes in D2O solution. The 1H lanthanide induced shifts (LIS) observed for the Ce(III), Tm(III), and Yb(III) complexes can be fit to a theoretical model assuming that dipolar contributions are dominant for all protons. The resulting calculated values are consistent with highly rhombic magnetic susceptibility tensors with the magnetic axes being coincident with the symmetry axes of the molecule. In contrast with the solid-state structure, the analysis of the LIS data indicates that the Ce(III) complexes present a lambdalambda (or deltadelta) conformation in solution.  相似文献   

3.
Three novel equations were proposed to perform graphical model-free analysis of lanthanide-induced shifts in NMR spectra of axially symmetrical complexes within Bleaney's T(-2) expansion. Application and efficiency of these newly developed approaches were demonstrated on the example of heteroleptic triple-decker crown-phthalocyaninates (Pc)M[(15C5)(4)Pc]M(Pc), where (15C5)--15-crown-5, (Pc(2-))--phthalocyaninato-dianion, M = Nd, Sm, Eu, Tb, Dy, Ho, Er, Tm, Yb and Y as diamagnetic reference. By construction of these equations, the proposed analytical techniques are more sensitive to variations of hyperfine coupling terms throughout lanthanide series, in comparison with previously developed approaches, becoming a valuable tool for the investigation of structural and electronic characteristics of lanthanide complexes.  相似文献   

4.
Lanthanide-binding peptide tags (LBTs) containing a single cysteine residue can be attached to proteins via a disulfide bond, presenting a flexible means of tagging proteins site-specifically with a lanthanide ion. Here we show that cysteine residues placed in different positions of the LBT can be used to expose the protein to different orientations of the magnetic susceptibility anisotropy (delta chi) tensor and to generate different molecular alignments in a magnetic field. Delta chi tensors determined by nuclear magnetic resonance (NMR) spectroscopy for LBT complexes with Yb3+, Tm3+, and Er3+ suggest a rational way of producing alignment tensors with different orientations. In addition, knowledge of the delta chi tensor of LBT allows modeling of the protein-LBT structures. Despite evidence for residual mobility of the LBTs with respect to the protein, the pseudocontact shifts and residual dipolar couplings displayed by proteins disulfide-bonded to LBTs are greater than those achievable with most other lanthanide binding tags.  相似文献   

5.
Variable-temperature (1)H and (13)C NMR measurements of the D(3)-symmetrical triple-helical complexes [Ln(L1-2H)(3)](3)(-) (L1 = pyridine-2,6-dicarboxylic acid; Ln = La-Lu) show evidence of dynamic intermolecular ligand-exchange processes whose activation energies depend on the size of the metal ion. At 298 K, the use of diastereotopic probes in [Ln(L3-2H)(3)](3)(-) (L3 = 4-ethyl-pyridine-2,6-dicarboxylic acid) shows that fast intramolecular P <==> M interconversion between the helical enantiomers occurs on the NMR time scale. Detailed analyses of the paramagnetic NMR hyperfine shifts according to crystal-field independent techniques demonstrate the existence of two different helical structures, one for large lanthanides (Ln = La-Eu) and one for small lanthanides (Ln = Tb-Lu), in complete contrast with the isostructurality proposed 25 years ago. A careful reconsideration of the original crystal-field-dependent analysis shows that an abrupt variation of the axial crystal-field parameter A(0)2 parallels the structural change leading to some accidental compensation effects that prevent the detection of structural variations according to the classical one-nucleus method. Crystal structures in the solid state and density functional theory calculations in the gas phase provide structural models that rationalize the paramagnetic NMR data. A regular triple-helical structure is found for small lanthanides (Ln = Tb-Lu) in which the terdentate chelating ligands are rigidly tricoordinated to the metals. A flexible and distorted structure is evidenced for Ln = La-Eu in which the central pyridine rings interact poorly with the metal ion. The origin of the simultaneous variation of structural parameters and crystal-field and hyperfine constants near the middle of the lanthanide series is discussed together with the use of crystal-field-independent techniques for the interpretation of paramagnetic NMR spectra in axial lanthanide complexes.  相似文献   

6.
The detailed knowledge about the structure of multinuclear paramagnetic lanthanide complexes for the targeted design of these compounds with special magnetic, sensory, optical and electronic properties is a very important task. At the same time, establishing the structure of such multinuclear paramagnetic lanthanide complexes in solution, using NMR is a difficult task, since several paramagnetic centers act simultaneously on the resulting chemical shift of a particular nucleus. In this paper, we have demonstrated the possibility of molecular structure determination in solution on the example of binuclear triple-decker lanthanide(III) complexes with tetra-15-crown-5-phthalocyanine Ln2[(15C5)4Pc]3 {where Ln = Tb (1) and Dy (2)} by quantitative analysis of the pseudo-contact lanthanide-induced shifts (LIS). The symmetry of complexes was used for the simplification of the calculation of pseudo-contact shifts on the base of the expression for the magnetic susceptibility tensor in the arbitrary oriented magnetic axis system. Good agreement between the calculated and experimental shifts in the 1H NMR spectra indicates the similarity of the structure for the complexes 1 and 2 in solution of CDCl3 and the structure in the crystalline phase, found from the data of the X-ray structural study of the similar complex Lu2[(15C5)4Pc]3. The described approach can be useful for LIS analysis of other polynuclear symmetric lanthanide complexes.  相似文献   

7.
The first detection and characterization of the interactions between the f-electronic systems in the dinuclear complexes of paramagnetic trivalent Tb, Dy, Ho, Er, Tm, and Yb ions with phthalocyanine ligands are presented. The molar magnetic susceptibilities, chi(m), were measured for PcLnPcLnPc* ([Ln, Ln]; Pc = dianion of phthalocyanine, Pc* = dianion of 2,3,9,10,16,17,23,24-octabutoxyphthalocyanine) and PcLnPcYPc* ([Ln, Y]) in the range from 1.8 K to room temperature. The selective synthetic method previously reported for the heterodinuclear complex [Y, Ln] was used to prepare [Ln, Ln] and [Ln, Y] with a modification on the choice of starting materials. The f-f interaction contributions to the magnetic susceptibility are evaluated as Delta(chi)(m)T = chi(m)([Ln, Ln])T - chi(m)([Ln, Y])T - chi(m)([Y, Ln])T, where T refers to temperature on the kelvin scale. The homodinuclear complexes having f(8)-f(10)-systems, namely [Tb, Tb], [Dy, Dy], and [Ho, Ho], show positive Delta(chi)(m)T values in the 1.8-50 K range, indicating the existence of ferromagnetic interaction between the f-systems. The magnitude of the Delta(chi)(m)T increases in the descending order of the number of f-electrons. [Er, Er] gives negative Delta(chi)(m)T values in the 1.8-50 K range, showing the antiferromagnetic nature of the f-f interaction. [Tm, Tm] exhibits small and negative Delta(chi)(m)T values, which gradually decline in the negative direction as the temperature decreases in the range 13-50 K and sharply rise in the positive direction as the temperature falls from 10 to 1.8 K. [Yb, Yb] has extremely small Delta(chi)(m)T values, whose magnitude at 2 K is less than 1% of that of [Tb, Tb]. The ligand field parameters of the ground-state multiplets of the six [Ln, Y] complexes are determined by simultaneous fitting to both the magnetic susceptibility data and paramagnetic shifts of (1)H NMR. The theoretical analysis successfully converged by assuming that each ligand field parameter is a function of the number of f-electrons in each ion. Using these parameters as well as the previously obtained corresponding parameters for the [Y, Ln] series, the interactions between the f-systems in [Ln, Ln] are investigated. All the characteristic observations above are satisfactorily reproduced with the assumption that the magnetic dipolar term is the sole source of the f-f interaction.  相似文献   

8.
Immobilized lanthanide ions offer the opportunity to refine structures of proteins and the complexes they form by using restraints obtained from paramagnetic NMR experiments. We report the design, synthesis, and spectroscopic evaluation of the lanthanide chelator, Caged Lanthanide NMR Probe 5 (CLaNP-5) readily attachable to a protein surface via two cysteine residues. The probe causes tunable pseudocontact shifts, alignment, paramagnetic relaxation enhancement, and luminescence, by chelating it to the appropriate lanthanide ion. The observation of single shifts and the finding that the magnetic susceptibility tensors obtained from shifts and alignment analyses are highly similar strongly indicate that the probe is rigid with respect to the protein backbone. By placing the probe at various positions on a model protein it is demonstrated that the size and orientation of the magnetic susceptibility tensor of the probe are independent of the local protein environment. Consequently, the effects of the probe are readily predictable using a protein structure only. These findings designate CLaNP-5 as a protein probe to deliver unambiguous high quality structural restraints in studies on protein-protein and protein-ligand interactions.  相似文献   

9.
Pseudocontact shifts (PCS) induced by paramagnetic lanthanide ions provide unique long‐range structural information in nuclear magnetic resonance (NMR) spectra, but the site‐specific attachment of lanthanide tags to proteins remains a challenge. Here we incorporated p‐azido‐phenylalanine (AzF) site‐specifically into the proteins ubiquitin and GB1, and ligated the AzF residue with alkyne derivatives of small nitrilotriacetic acid and iminodiacetic acid tags using the CuI‐catalysed “click” reaction. These tags form lanthanide complexes with no or only a small net charge and produced sizeable PCSs with paramagnetic lanthanide ions in all mutants tested. The PCSs were readily fitted by single magnetic susceptibility anisotropy tensors. Protein precipitation during the click reaction was greatly alleviated by the presence of 150 mM NaCl.  相似文献   

10.
Combination of three radical anionic Ph-BIAN ligands (Ph-BIAN=bis-(phenylimino)-acenaphthenequinone) with lanthanoid ions leads to a series of homoleptic, six-coordinate complexes of the type Ln(Ph-BIAN)3. Magnetic coupling data were measured by paramagnetic solution NMR spectroscopy. Combining 1H NMR with 2H NMR of partially deuterated compounds allowed a detailed study of the magnetic susceptibility anisotropies over a large temperature range. The observed chemical shifts were separated into ligand- and metal-centered contributions by comparison with the Y analogue (diamagnetic at the metal). The metal-centered contributions of the complexes with the paramagnetic ions could then be separated into pseudocontact and Fermi contact shifts. The latter is large within the Ph-BIAN scaffold, which shows that magnetic coupling is significant between the lanthanide ion and the radical ligand. Pseudocontact shifts were further correlated to structural data obtained from X-ray diffraction experiments. Ligand-field parameters were determined by fitting the temperature dependence of the observed magnetic susceptibility anisotropies. The electronic structure determined by this approach shows, that the Er and Tm analogues are candidates for single molecule magnets (SMM). These results demonstrate the possibilities for the application of NMR spectroscopy in investigations of paramagnetic systems in general and single molecule magnets in particular.  相似文献   

11.
Two derivatives of 1,4,7,10-tetraazacyclododecane with trans-acetate and trans-amide side-chain ligating groups have been prepared and their complexes with lanthanide cations examined by multinuclear NMR spectroscopy. These lanthanide complexes exist in aqueous solution as a mixture of slowly interconverting coordination isomers with 1H chemical shifts similar to those reported previously for the major (M) and minor (m) forms of the tetraacetate ([Ln(dota)]-) and tetraamide ([Ln(dtma)]3+) complexes. As in the [Ln(dota)]- and [Ln(dtma)]3+ complexes, the m/M ratio proved to be a sensitive function of lanthanide size and temperature. An analysis of 1H hyperfine shifts in spectra of the Yb3+ complexes revealed significant differences between the axial (D1) and non-axial (D2) components of the magnetic susceptibility tensor anisotropy in the m and M coordination isomers and the energetics of ring inversion and m <==> M isomerization as determined by two-dimensional exchange spectroscopy (EXSY). (17)O shift data for the Dy3+ complexes showed that both have one inner-sphere water molecule. A temperature-dependent (17)O NMR study of bulk water linewidths for solutions of the Gd3+ complexes provided direct evidence for differences in water exchange rates for the two coordination isomers. The bound-water lifetimes (tauM298) in the M and m isomers of the Gd3+ complexes ranged from 1.4-2.4 micros and 3-14 ns, respectively. This indicates that 1) the inner-sphere water lifetimes for the complexes with a single positive charge reported here are considerably shorter for both coordination isomers than the corresponding values for the [Gd(dtma)]3+ complex with three positive charges, and 2) the difference in water lifetimes for M and m isomers in these two series is magnified in the [Gd[dota-bis(amide)]] complexes. This feature highlights the remarkable role of both charge and molecular geometry in determining the exchange rate of the coordinated water.  相似文献   

12.
The f-electronic structures of the ground states of anionic bis(phthalocyaninato)lanthanides, [Pc(2)Ln](-) (Pc = dianion of phthalocyanine, Ln = Tb(3+), Dy(3+), Ho(3+), Er(3+), Tm(3+), or Yb(3+)), are determined. Magnetic susceptibilities of the powder samples of [Pc(2)Ln]TBA (TBA = tetra-n-butylammonium cation) in the range 1.8-300 K showed characteristic temperature dependences which resulted from splittings of the ground-state multiplets. NMR signals for the two kinds of protons on the Pc rings at room temperature were shifted to lower frequency with respect to the diamagnetic Y complex in Ln = Tb, Dy, and Ho cases, and to higher frequency in Er, Tm, and Yb cases. The ratios of the paramagnetic shifts of the two positions were near constant in the six cases. This indicates that the shifts are predominantly caused by the magnetic dipolar term, which is determined by the anisotropy of the magnetic susceptibility of the lanthanide ion. Using a multidimensional nonlinear minimization algorithm, we determined a set of ligand-field parameters that reproduces both the NMR and the magnetic susceptibility data of the six complexes simultaneously. Each ligand-field parameter was assumed to be a linear function of atomic number of the lanthanide. The energies and wave functions of the sublevels of the multiplets are presented. Temperature dependences of anisotropies in the magnetic susceptibilities are theoretically predicted for the six complexes.  相似文献   

13.
The model-free approach has been extended with the derivation of a novel three-nuclei crystal-field independent method for investigating isostructurality in nonaxial (i.e., rhombic) complexes along the lanthanide series. Application of this technique to the heterotrimetallic sandwich complexes [LnLu2(TACI-3H)2(H2O)6]3+, which possess a single C2v-symmetrical paramagnetic center, unambiguously evidences isostructurality for Ln = Pr-Yb, while the variation of the second-rank crystal-field parameters and along the series prevents reliable structural analyses with the classical one-nucleus equation. Extension toward polymetallic magnetically noncoupled rhombic lanthanide complexes in [Ln2Lu(TACI-3H)2(H2O)6]3+ (two paramagnetic centers with Cs microsymmetry) and [Ln3(TACI-3H)2(H2O)6]3+ (three paramagnetic centers with C2v microsymmetry) requires only minor modifications of the original three-nuclei equation. Isostructurality characterizes [Ln2Lu(TACI-3H)2(H2O)6]3+ (Ln = Pr-Yb), while [Ln3(TACI-3H)2(H2O)6]3+ exhibit a structural change between Eu and Tb which results from the concomitant contraction of the three metallic centers. Particular attention has been focused on (i) the stepwise increase of contact (i.e., through-bond) and pseudocontact (i.e., through-space) contributions when the number of paramagnetic centers increases, (ii) the assignment of 13C resonances in the strongly paramagnetic complexes [Ln3(TACI-3H)2(H2O)6]3+ (Ln = Tb-Yb) for which reliable T1 measurements and [1H-13C] correlation spectra are not accessible, and (iii) the combination of crystal-field dependent and independent methods for analyzing the paramagnetic NMR spectra of axial and nonaxial lanthanide complexes.  相似文献   

14.
Solution 1H NMR spectroscopy has been used to determine the relative strengths (covalency) of the two axial His-Fe bonds in paramagnetic, S = 1/2, human met-cytoglobin. The sequence specific assignments of crucial portions of the proximal and distal helices, together with the magnitude of hyperfine shifts and paramagnetic relaxation, establish that His81 and His113, at the canonical positions E7 and F8 in the myoglobin fold, respectively, are ligated to the iron. The characterized complex (approximately 90%) in solution has protohemin oriented as in crystals, with the remaining approximately 10% exhibiting the hemin orientation rotated 180 degrees about the alpha-, gamma-meso axis. No evidence could be obtained for any five-coordinate complex (<1%) in equilibrium with the six-coordinate complexes. Extensive sequence-specific assignments on other dipolar shifted helical fragments and loops, together with available alternate crystal coordinates for the complex, allowed the robust determination of the orientation and anisotropies of the paramagnetic susceptibility tensor. The tilt of the major axis is controlled by the His-Fe-His vector, and the rhombic axes are controlled by the mean of the imidazole orientations for the two His. The anisotropy of the paramagnetic susceptibility tensor allowed the quantitative factoring of the hyperfine shifts for the two axial His to reveal an indistinguishable pattern and magnitudes of the contact shifts or pi spin densities, and hence, indistinguishable Fe-imidazole covalency for both Fe-His bonds.  相似文献   

15.
Paramagnetic effects from lanthanide ions present powerful tools for protein studies by nuclear magnetic resonance (NMR) spectroscopy provided that the lanthanide can be site‐specifically and rigidly attached to the protein. A new, particularly small and rigid lanthanide‐binding tag, 3‐mercapto‐2,6‐pyridinedicarboxylic acid (3MDPA), was synthesized and attached to two different proteins via a disulfide bond. The complexes of the N‐terminal domain of the E. coli arginine repressor (ArgN) with seven different paramagnetic lanthanide ions and Co2+ were analyzed in detail by NMR spectroscopy. The magnetic susceptibility anisotropy (Δχ) tensors and metal position were determined from pseudocontact shifts. The 3MDPA tag generated very different Δχ tensor orientations compared to the previously studied 4‐mercaptomethyl‐DPA tag, making it a highly complementary and useful tool for protein NMR studies.  相似文献   

16.
Paramagnetic metal ions can induce molecular alignment with respect to the magnetic field. This alignment generates residual anisotropic chemical shifts (RACS) due to nonisotropic averaging over the molecular orientations. Using a 30 kDa protein-protein complex, the RACS effects are shown to be significant for heteronuclear spins with large chemical shift anisotropies, lanthanide ions with large anisotropic magnetic susceptibility tensors, and measurements at high magnetic field. Therefore, RACS must be taken into account when pseudocontact shifts are measured by comparison of chemical shifts observed between complexes with paramagnetic and diamagnetic lanthanide ions. The results are of particular importance when different pseudocontact shifts measured for the 1HN, 15N, and 13C' spins of a peptide group are used to restrain its orientation with respect to the electronic magnetic susceptibility tensor in structure calculations.  相似文献   

17.
顺磁性镧系金属有机配合物的~1H核磁共振研究   总被引:1,自引:0,他引:1  
顺磁类的核磁共振研究大多是简单化合物,偏重理论方面的研究,对镧系配合物曾有报道。由于这类样品对空气和湿气极为敏感,在国内外研究顺磁性~1H谱甚少。本文研究了含氯桥的醚基取代环戊二烯镧系配合物二聚体的~1H化学位移,线宽,弛豫时间T_1和磁化率,从中找出了顺磁类有机镧系配合物~1H NMR的规律。  相似文献   

18.
A detailed analysis of paramagnetic NMR shifts in a series of isostructural lanthanide complexes relavant to PARASHIFT contrast agents reveals unexpected trends in the magnetic susceptibility anisotropy that cannot be explained by the commonly used Bleaney's theory. Ab initio calculations reveal that the primary assumption of Bleaney's theory—that thermal energy is larger than the ligand field splitting—does not hold for the lanthanide complexes in question, and likely for a large fraction of lanthanide complexes in general. This makes the orientation of the magnetic susceptibility tensor differ significantly between complexes of different lanthanides with the same ligand: one of the most popular assumptions about isostructural lanthanide series is wrong.  相似文献   

19.
以~(199)Sn和~(23)Na核磁共振研究了Na_4Sn_9-乙二胺体系中加入M(acacen)(M=Cu~(2+),Ni~(2+))和Ln(fod)_3(Ln=Pr~(3+),Yb~(3+),Eu~(3+))后的化学位移和偶合常数。结果表明,假接触和体积磁化率的变化是引起化学位移变化的主要原因,而Fermi接触的贡献可以忽略。  相似文献   

20.
顺磁类的核磁共振研究大多是简单化合物,偏重理论方面的研究,对镧系配合物曾有报道。由于这类样品对空气和湿气极为敏感,在国内外研究顺磁性1H谱甚少。本文研究了含氯桥的醚基取代环戊二烯镧系配合物二聚体的1H化学位移,线宽,弛豫时间T1和磁化率,从中找出了顺磁类有机镧系配合物1H NMR的规律。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号