首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We present numerical simulations of fully nonlinear drift wave-zonal flow (DW-ZF) turbulence systems in a nonuniform magnetoplasma. In our model, the drift wave (DW) dynamics is pseudo-three-dimensional (pseudo-3D) and accounts for self-interactions among finite amplitude DWs and their coupling to the two-dimensional (2D) large amplitude zonal flows (ZFs). The dynamics of the 2D ZFs in the presence of the Reynolds stress of the pseudo-3D DWs is governed by the driven Euler equation. Numerical simulations of the fully nonlinear coupled DW-ZF equations reveal that short scale DW turbulence leads to nonlinear saturated dipolar vortices, whereas the ZF sets in spontaneously and is dominated by a monopolar vortex structure. The ZFs are found to suppress the cross-field turbulent particle transport. The present results provide a better model for understanding the coexistence of short and large scale coherent structures, as well as associated subdued cross-field particle transport in magnetically confined fusion plasmas.  相似文献   

2.
Evidence is presented for a multitude of discrete frequency Alfvén waves in the core of magnetically confined high-temperature fusion plasmas. Multiple diagnostic instruments confirm wave excitation over a wide spatial range from the device size at the longest wavelengths down to the thermal ion Larmor radius. At the shortest scales, the poloidal wavelengths are comparable to the scale length of electrostatic drift wave turbulence. Theoretical analysis confirms a dominant interaction of the modes with particles in the thermal ion distribution traveling well below the Alfvén velocity.  相似文献   

3.
An investigation has been made of modulational instability of a nonlinear ion acoustic wave in a weakly relativistic warm unmagnetized nonthermal plasma whose constituents are an inertial ion fluid and nonthermally distributed electrons. Up to the second order of the perturbation theory, a nonlinear Schr?dinger type (NST) equation for the complex amplitude of the perturbed ion density is obtained. The coefficients of this equation show that the relativistic effect, the finite ion temperature and the nonthermal electrons modify the condition of the modulational stability. The association between the small-wavenumber limit of the NST equation and the oscillatory solution of the Korteweg-de Varies equation, obtained by a reductive perturbation theory, is satisfied.  相似文献   

4.
The nonlinear ion acoustic wave propagation in a strongly coupled plasma composed of ions and trapped electrons has been investigated. The reductive perturbation method is employed to derive a modified Korteweg–de Vries–Burgers (mKdV–Burgers) equation. To solve this equation in case of dissipative system, the tangent hyperbolic method is used, and a shock wave solution is obtained. Numerical investigations show that, the ion acoustic waves are significantly modified by the effect of polarization force, the trapped electrons and the viscosity coefficients. Applying the bifurcation theory to the dynamical system of the derived mKdV–Burgers equation, the phase portraits of the traveling wave solutions of both of dissipative and non-dissipative systems are analyzed. The present results could be helpful for a better understanding of the waves nonlinear propagation in a strongly coupled plasma, which can be produced by photoionizing laser-cooled and trapped electrons [1], and also in neutron stars or white dwarfs interior.  相似文献   

5.
Basing on recent solar models, the excitation of ion‐acoustic turbulence in the weakly‐collisional, fully and partially‐ionized regions of the solar atmosphere is investigated. Within the frame of hydrodynamics, conditions are found under which the heating of the plasma by ion‐acoustic type waves is more effective than the Joule heating. Taking into account wave and Joule heating effects, a nonlinear differential equation is derived, which describes the evolution of nonlinear ion‐acoustic waves in the collisional plasma.  相似文献   

6.
Linear and nonlinear coupling of drift and ion acoustic waves are studied in a nonuniform magnetized plasma comprising of Oxygen and Hydrogen ions with nonthermal distribution of electrons. It has been observed that different ratios of ion number densities and kappa and Cairns distributed electrons significantly modify the linear dispersion characteristics of coupled drift-ion acoustic waves. In the nonlinear regime, KdV (for pure drift waves) and KP (for coupled drift-ion acoustic waves) like equations have been derived to study the nonlinear evolution of drift solitary waves in one and two dimensions. The dependence of drift solitary structures on different ratios of ion number densities and nonthermal distribution of electrons has also been explored in detail. It has been found that the ratio of the diamagnetic drift velocity to the velocity of the nonlinear structure determines the existence regimes for the drift solitary waves. The present investigation may be beneficial to understand the formation of solitons in the ionospheric F-region.  相似文献   

7.
The general nonlinear equation of the third order in field strength for the lower-hybrid drift waves in inhomogeneous plasma is obtained on the basis of kinetic theory. This equation enables us to describe strong turbulence effects (modulational instability, soliton-like solutions, etc.) as well as weak turbulence effects (decays, scattering). The investigation of the modulational instability of the lower-hybrid drift waves is carried out. It is demonstrated that the development of the lower-hybrid drift wave modulational instability is possible only when the wavevector of the modulational perturbations is less or of the order of the wavevector of the pump wave. The condition on the wave vectors, when the nonlinear response defining the character of the modulational instability is determined by the inhomogeneity effects, is obtained.  相似文献   

8.
It is pointed out that the observation of the electrostatic ion acoustic wave frequency can be a suitable check to determine whether the produced plasma is a pure pair-ion plasma or whether it comprises some concentration of electrons. A theoretical model for the pair-ion plasma dynamics is presented along with a new electrostatic mode which can exist only in such systems. It can become unstable in the presence of shear flow and it can give rise to vortex structures in the nonlinear regime. The possibility of shocks and solitons, due to nonlinear drift waves in a pair-ion plasma comprising electrons, is also discussed. The relevance of this investigation to both laboratory and astrophysical plasmas is pointed out.  相似文献   

9.
Q. Haque  S. Ali Shan 《Physics letters. A》2018,382(38):2744-2748
The impact of electron exchange-correlation term on the linear and nonlinear quantum ion (QIA) acoustic drift waves in a highly degenerate plasma is investigated. An analytical approach is employed to derive the differential equation which is later on turned into Sagdeev energy integral equation that can be utilized to get drift solitons under existence conditions. It is noted that phase speed/frequency of the linear drift quantum ion acoustic (QIA) waves increases with electron exchange-correlation effect, but the amplitude of the corresponding solitons decreases with inclusion of these effects. Present study is carried out with reference to highly dense plasma environments like fast ignition inertial confinement fusion and white dwarfs etc.  相似文献   

10.
High-resolution measurements of impurity ion dynamics provide first-time evidence of classical ion confinement in a toroidal, magnetically confined plasma. The density profile evolution of fully stripped carbon is measured in MST reversed-field pinch plasmas with reduced magnetic turbulence to assess Coulomb-collisional transport without the neoclassical enhancement from particle drift effects. The impurity density profile evolves to a hollow shape, consistent with the temperature screening mechanism of classical transport. Corroborating methane pellet injection experiments expose the sensitivity of the impurity particle confinement time to the residual magnetic fluctuation amplitude.  相似文献   

11.
禹定臣  郝晓飞  郝东山 《光子学报》2014,39(10):1871-1874
 基于电子与多光子集团非线性Compton散射模型,研究了多光子非线性Compton散射对激光等离子体中强缪尔湍动谱的影响,提出了将入射光和散射光作为形成强缪尔湍动的新机制,给出了横等离激元、强朗缪尔激元和离声激元之间相互作用满足的修正方程,并进行了数值模拟.结果表明:Compton散射使横等离激元和朗缪尔激元间的碰撞频率大大增加,随着时间的演化,横等离激元和朗缪尔激元的能量由小波数区向大波数区的转移比散射前要快得多,同时产生剧烈的坍塌.坍塌后期,等离激元的强非线性作用激发出高次共振谐波,使能量从一个谐波转移到另一个谐波,形成无限高次谐波,引起波的破碎,出现由调制不稳定性控制的强朗缪尔湍动、较强的激光成丝和能量均分现象.研究结果为进一步研究强朗缪尔湍动的加速机制、反常碰撞、激光加热实验及快点火实验提供了理论支持.  相似文献   

12.
W. Masood 《Physics letters. A》2009,373(16):1455-1459
Linear and nonlinear propagation characteristics of quantum drift ion acoustic waves are investigated in an inhomogeneous two-dimensional plasma employing the quantum hydrodynamic (QHD) model. In this regard, the dispersion relation of the drift ion acoustic waves is derived and limiting cases are discussed. In order to study the drift ion acoustic solitons, nonlinear quantum Kadomstev-Petviashvilli (KP) equation in an inhomogeneous quantum plasma is derived using the drift approximation. The solution of quantum KP equation using the tangent hyperbolic (tanh) method is also presented. The variation of the soliton with the quantum Bohm potential, the ratio of drift to soliton velocity in the co-moving frame, , and the increasing magnetic field are also investigated. It is found that the increasing number density decreases the amplitude of the soliton. It is also shown that the fast drift soliton (i.e., v*>u) decreases whereas the slow drift soliton (i.e., v*<u) increases the amplitude of the soliton. Finally, it is shown that the increasing magnetic field increases the amplitude of the quantum drift ion acoustic soliton. The stability of the quantum KP equation is also investigated. The relevance of the present investigation in dense astrophysical environments is also pointed out.  相似文献   

13.
A N Dev  M K Deka  J Sarma  D Saikia  N C Adhikary 《中国物理 B》2016,25(10):105202-105202
The stationary solution is obtained for the K–P–Burgers equation that describes the nonlinear propagations of dust ion acoustic waves in a multi-component, collisionless, un-magnetized relativistic dusty plasma consisting of electrons, positive and negative ions in the presence of charged massive dust grains. Here, the Kadomtsev–Petviashvili(K–P) equation, threedimensional(3D) Burgers equation, and K–P–Burgers equations are derived by using the reductive perturbation method including the effects of viscosity of plasma fluid, thermal energy, ion density, and ion temperature on the structure of a dust ion acoustic shock wave(DIASW). The K–P equation predictes the existences of stationary small amplitude solitary wave,whereas the K–P–Burgers equation in the weakly relativistic regime describes the evolution of shock-like structures in such a multi-ion dusty plasma.  相似文献   

14.
The Charney-Hasegawa-Mima equation applies to a broad variety of hydrodynamic systems ranging from the large-scale planetary circulations to small-scale processes in magnetically confined plasma. This equation harbors flow regimes that have not yet been fully understood. One of those is the recently discovered regime of zonostrophic turbulence emerging in the case of small-scale forced, barotropic two-dimensional turbulence on the surface of a rotating sphere or in its beta-plane approximation. The commingling of strong nonlinearity, strong anisotropy and Rossby waves underlying this regime is highlighted by the emergence of stable systems of alternating zonal jets and a new class of nonlinear waves, or zonons. This Letter elucidates the physics of the zonons and their relation to the large-scale coherent structures.  相似文献   

15.
The properties of low frequency (coupled acoustic and drift wave) nonlinear structures including solitary waves and double layers in an inhomogeneous magnetized electron–positron–ion (EPI) nonthermal plasma with density and temperature inhomogeneities are studied in a simplified way. The nonlinear differential equation derived here for the study of double layers in the inhomogeneous EPI plasma resembles with the modified KdV equation in the stationary frame. But the method used for the derivation of nonlinear differential equation is simple and consistent to give both the stationary solitary waves and double layers. Further, the illustrations show that superthermality κ, drift velocity and temperature inhomogeneity have significant effects on the amplitude, width, and existence range of the structures.  相似文献   

16.
Nonlinear forces on plasma particles in the presence of a test nonresonant wave and resonant plasma wave turbulence are calculated. The important feature of the considered nonlinear effect is that the forces due to the nonresonant test wave act on the plasma particles in the absence of linear and nonlinear resonances between the wave and the particles. Although in a closed plasma-wave system the process is balanced by the quasilinear interaction between the plasma resonant turbulence and plasma particles (leading to nonstationarity and inhomogeneity of the system), in open systems the effect can be significant.  相似文献   

17.
The interaction between broadband drift mode turbulence and zonal flows has been studied through the wave-kinetic approach. Simulations have been conducted in which a particle-in-cell representation is used for the quasiparticles, while a fluid model is employed for the plasma. The interactions have been studied in a plasma edge configuration which has applications in both tokamak physics and magnetopause boundary layer studies. Simulation results show the development of a zonal flow through the modulational instability of the drift wave distribution, as well as the existence of solitary zonal flow structures about an ion gyroradius wide, drifting towards steeper relative density gradients.  相似文献   

18.
The parametric decay process in inhomogeneous layers existing near the plasma boundaries or in front of antennas and probes in a plasma has been investigated. The linear enhancement of the pump field near ω = ωp, the threshold fieldstrength, the wavenumber selection rules and the influence of spontaneous low frequency fluctuations are discussed in detail using a one-dimensional model of the inhomogeneous plasma capacitor. According to this model the instabilities appear in the layers with maximum linear transformation and (linear) absorption. In addition, a strong nonlinear part of absorption in the presence of the instability has been observed. The level of the spontaneous low frequency fluctuations influences strongly the spectrum of the parametrically excited ion waves. The experiments show a redistribution of the transferred ion acoustic wave energy over the whole wave continuum up to ωpi, if a sufficient strong spontaneous fluctuation level exists in the plasma. It is impossible, however, to excite ion acoustic turbulence by the decay of the high frequency pump field under the present conditions. The conditions for the linear field enhancement are disturbed by the action of the ponderomotive forces changing the density profile near the critical point before reaching the strong pump amplitude being necessary for the excitation of a cascade of decay processes.  相似文献   

19.
In the lowest order of approximation quasi-two-dimensional dynamics of planetary atmospheres and of plasmas in a magnetic field can be described by a common convective vortex equation, the Charney and Hasegawa-Mima (CHM) equation. In contrast to the two-dimensional Navier-Stokes equation, the CHM equation admits "shielded vortex solutions" in a homogeneous limit and linear waves ("Rossby waves" in the planetary atmosphere and "drift waves" in plasmas) in the presence of inhomogeneity. Because of these properties, the nonlinear dynamics described by the CHM equation provide rich solutions which involve turbulent, coherent and wave behaviors. Bringing in nonideal effects such as resistivity makes the plasma equation significantly different from the atmospheric equation with such new effects as instability of the drift wave driven by the resistivity and density gradient. The model equation deviates from the CHM equation and becomes coupled with Maxwell equations. This article reviews the linear and nonlinear dynamics of the quasi-two-dimensional aspect of plasmas and planetary atmosphere starting from the introduction of the ideal model equation (CHM equation) and extending into the most recent progress in plasma turbulence.  相似文献   

20.
A theoretical investigation has been carried out to study the effect of strong electrostatic interaction on the dust acoustic shock structures in strongly coupled dusty plasma with dust charge fluctuations.The fluid approach is employed,in which the strong electrostatic interaction is modeled by effective electrostatic temperature.A Burger-like equation,the coefficients of which are significantly modified by effects of strong coupling and dust charge Ructuation,is derived.It is shown that the combined effects of dust charge Ructuation,the ion/electron temperature,the ion/electron population,and strong coupling effect modify the basic properties of the dust acoustic waves in such a strongly coupled dusty plasma.The results of this work are compared with those observed by some laboratory experiments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号