首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effect of adsorbates on field emission from carbon nanotubes   总被引:1,自引:0,他引:1  
Recent experiments indicate that water molecules adsorbed on carbon nanotube tips significantly enhance field-emission current. Through first-principles density-functional theory calculations we show that the water-nanotube interaction is weak in zero electric field. However, under emission conditions large electric field present at the tube tip: (a) increases the binding energy appreciably, thereby stabilizing the adsorbate; and (b) lowers the ionization potential (IP), thereby making it easier to extract electrons. Lowering of IP is enhanced further through the formation of a water cluster on the nanotube tip.  相似文献   

2.
Ab initio calculations demonstrated that the energy gap modulation of a chiral carbon nanotube with mono-vacancy defect can be achieved by applying a transverse electric field. The bandstructure of this defective carbon nanotube varying due to the external electric field is distinctly different from those of the perfect nanotube and defective zigzag nanotube. This variation in bandstructure strongly depends on not only the chirality of the nanotube and also the applied direction of the transverse electric field. A mechanism is proposed to explain the response of the local energy gap between the valence band maximum state and the local gap state under external electric field. Several potential applications of these phenomena are discussed.  相似文献   

3.
4.
Based on the effective-mass approximation, the competition effects between the laser field and applied electric field on impurity states have been investigated variationally in the ZB GaN/AlGaN quantum well (QW). Numerical results show that for any laser field, the electric field makes the donor binding energy present asymmetric distribution with respect to the center of the QW. Moreover, when the laser field is weak, the electric field effects are obvious on the donor binding energy; however, the electric field effects are insensitive to the variation of donor binding energy in the ZB GaN/AlGaN QW with strong laser field.  相似文献   

5.
采用基于密度泛函理论的第一性原理计算研究了电场对BN纳米管的电子结构的影响.首先对在不同电场强度下的纳米管几何结构进行了优化,可以看出纳米管沿轴方向层间距出现了不规则的变化.电子能带结构显示,在电场作用下,zigzag型和armchair型两种结构纳米管的能带向低能方向移动,并且导致纳米管的带隙有显著的减小.电场使得armchair型纳米管的带隙发生了从间接带隙向直接带隙的转变.在电场作用下,纳米管的两端态密度呈现出明显的差异,正负电荷沿轴向出现了沿轴向的空间分离,Mulliken电荷分布图揭示出最高占据轨道和最低未占据轨道分居在纳米管的两端.  相似文献   

6.
王文娟  王海龙  龚谦  宋志棠  汪辉  封松林 《物理学报》2013,62(23):237104-237104
在有效质量近似下采用变分法计算了InGaAsP/InP量子阱内不同In组分下的激子结合能,分析了结合能随阱宽和In组分的变化情况,并且讨论了外加电场对激子结合能的影响. 结果表明:激子结合能是阱宽的一个非单调函数,随阱宽的变化呈现先增加后减小的趋势;随着In组分增大,激子结合能达到最大值的阱宽相应变小,这与材料的带隙改变有关;在一定范围内电场的存在对激子结合能的影响很小,但电场强度较大时会破坏激子效应. 关键词: 激子 InGaAsP/InP量子阱 结合能 电场  相似文献   

7.
The effects of the interaction between electron and bulk longitudinal optical (LO) phonon and surface optical (SO) phonon on the impurity binding energy of the ground state in a polar crystal slab within an external electric field are derived by using the method of a variational wavefunction. The binding energy of the bound polaron is obtained as a function of the impurity position, the slab thickness and the electric field strength. It is found that the polaronic correction to the impurity binding energy by the SO phonon may be enhanced and that by the LO phonon may be reduced with increasing electric field strength. And the effect of the electron-phonon interaction is quite important in increasing the values of binding energy.  相似文献   

8.
建立一种平行背栅极碳纳米管阵列阴极,基于电场叠加原理,利用镜像电荷法对其进行计算,给出碳纳米管顶端表面电场增强因子。在此基础上,进一步分析器件各类参数对电场增强因子的影响。分析表明,碳纳米管阵列阴极具有最佳阵列密度,其对应碳纳米管间距大约为碳纳米管高度的两倍,靠阴极阵列边缘部位的碳纳米管发射电子能力比其中心部位的大。除了碳纳米管的长径比之外,栅极宽度、栅极厚度和栅极间距等也对电场增强因子有一定的影响:栅极越宽,场增强因子越大;而栅极厚度、栅极间距越大,场增强因子就越小。  相似文献   

9.
In this paper, the effect of electric field on axial buckling of boron nitride nanotubes is investigated. For this purpose, molecular dynamics simulation and continuum mechanics are used for the first time simultaneously. In molecular dynamics simulation, the potential between boron nitride atoms is considered as Tersoff and Timoshenko beam theory is used in continuum mechanics. In this paper, buckling of zigzag and armchair boron nitride nanotubes are investigated. Here, the effects of the electric field and the length of the boron nitride nanotube on the critical load are investigated and it is shown that the effect of the electric field is different with respect to the arrangement of atoms in the boron nitride nanotubes. In fact, the electric field creates axial and torsional loads on the zigzag and armchair nanotube, respectively. Axial buckling of the zigzag nanotube is dependent on the electric field, whereas in the armchair nanotubes, the electric field changes have no effect on the axial buckling. To better understand the impact of the electric field on axial buckling, these results are compared with the continuum mechanics.  相似文献   

10.
The binding energy of the single and double bound polaron bound to a helium-type donor impurity in quantum wells (QWs) subject to a perpendicular electric field are calculated by a variational method. The couplings of an electron and the impurity with various phonon modes are considered. The results show that the cumulative effects of the electron–phonon coupling and the impurity–phonon coupling can contribute appreciably to the binding energy for the single bound polaron but only in some severe conditions for the double bound polaron. They also show that the binding energy is sensitive to the electric field strength. The comparison between the binding energies in the case of the impurity placed at the quantum well center and at the quantum well edge is also given.  相似文献   

11.
雷达  孟根其其格  张荷亮  智颖飙 《物理学报》2013,62(24):248502-248502
建立一种平行栅碳纳米管阵列阴极,利用悬浮球模型和镜像电荷法进行计算,给出碳纳米管顶端表面电场与电场增强因子的解析式. 在此基础上,进一步分析器件各类参数以及接触电阻对阴极电子发射性能的影响. 分析表明,碳纳米管间距大约为2倍碳纳米管高度时阵列阴极的分布密度最佳,靠边缘部位的碳纳米管发射电子能力比其中心部位的大;除碳纳米管的长径比之外,栅极宽度和栅极间距也对电场增强因子有一定作用;接触电阻的存在大幅度降低碳纳米管顶端表面电场与发射电流,而接触电阻高于800 kΩ时,器件对阳极驱动电压的要求更高. 关键词: 平行栅碳纳米管阵列 悬浮球 场增强因子 接触电阻  相似文献   

12.
Using the effective mass and parabolic band approximations and a variational procedure we have calculated the combined effects of intense laser radiation, hydrostatic pressure, and applied electric field on shallow-donor impurity confined in cylindrical-shaped single and double GaAs-Ga1−xAlxAs QD. Several impurity positions and inputs of the heterostructure dimensions, hydrostatic pressure, and applied electric field have been considered. The laser effects have been introduced by a perturbative scheme in which the Coulomb and the barrier potentials are modified to obtain dressed potentials. Our findings suggest that (1) for on-center impurities in single QD the binding energy is a decreasing function of the dressing parameter and for small dot dimensions of the structures (lengths and radius) the binding energy is more sensitive to the dressing parameter, (2) the binding energy is an increasing/decreasing function of the hydrostatic pressure/applied electric field, (3) the effects of the intense laser field and applied electric field on the binding energy are dominant over the hydrostatic pressure effects, (4) in vertically coupled QD the binding energy for donor impurity located in the barrier region is smaller than for impurities in the well regions and can be strongly modified by the laser radiation, and finally (5) in asymmetrical double QD heterostructures the binding energy as a function of the impurity positions follows a similar behavior to the observed for the amplitude of probability of the noncorrelated electron wave function.  相似文献   

13.
The hydrogenic impurity binding energy in rectangular quantum well wire including both barriers of finite height and an applied electric field are studied. The polaron effects on the ground-state binding energy in electric field are investigated by means of Landau-Pekar variation technique. The results for the binding energy as well as polaronic correction are obtained as a function of the size of the wire, the applied electric field and the position of the impurity. Our calculations are compared with previous results in quantum wires of comparable dimensions.  相似文献   

14.
The effects of external electric and magnetic fields on the ground state binding energy of hydrogenic donor impurity are compared in square, V-shaped, and parabolic quantum wells. With the effective-mass envelope-function approximation theory, the ground state binding energies of hydrogenic donor impurity in InGaAsP/InP QWs are calculated through the plane wave basis method. The results indicate that as the quantum well width increases, the binding energy changes most fast in SQW. When the well width is fixed, the binding energy is the largest in VQW for the donor impurity located near the center of QWs. For the smaller and larger well width, the electric field effect on binding energy is the most significant in VQW and SQW, respectively. The magnetic field effect on binding energy is the most significant in VQW. The combined effects of electric and magnetic fields on the binding energy of hydrogenic donor impurity are qualitative consistent in different shaped QWs.  相似文献   

15.
The combined effects of an in-growth direction applied electric field and hydrostatic pressure on the exciton binding energy and photoluminescence energy transitions are reported in this work for triple vertically coupled quantum dots. The calculations have been carried out within the effective mass approximation, and using a variational procedure. The results show that the exciton binding energy and the photoluminescence energy transitions are functions of external probes like the hydrostatic pressure and the applied electric field.  相似文献   

16.
We consider the effects of electric and magnetic fields as well as of hydrostatic pressure on the donor binding energy in InAs Pöschl-Teller quantum rings. The ground state energy and the electron wave function are calculated within the effective mass and parabolic band approximations, using the variational method. The binding energy dependencies on the electric field strength and the hydrostatic pressure are reported for different values of quantum ring size and shape, the parameters of the Pöschl-Teller confining potential, and the magnetic field induction. The results show that the binding energy is an increasing or decreasing function of the electric field, depending on the chosen parameters of the confining potential. Also, we have observed that the binding energy is an increasing/decreasing function of hydrostatic pressure/magnetic field induction. Likewise, the impurity binding energy behaves as an increasing/decreasing function of the inner/outer radii of the quantum ring nanostructure.  相似文献   

17.
Here we address the important role played by electric fields applied in carbon nanotube bundles in providing convenient scenarios for their use in electronic devices. We show that a gap modulation may be derived depending on the bundle configuration and the details of the applied field configuration. The system is described by a tight binding Hamiltonian and the Green function formalism is used to calculate the local density of states. Small bundles were used to validate our model on the basis of ab initio calculations. Further analysis shows that the number of tubes, geometrical configuration details and field intensities may be controlled to tune the electronic structure close to the Fermi energy, envisaging atomic-scale devices.  相似文献   

18.
Chemical vapor deposited (CVD) carbon nanotube (CNT) arrays were immersed in ethanol to make shrunk structures with separate nanotube “walls” for better field emission properties, such structures decreased the screening effects and reduced the turn-on electric field at 10 μA/cm2 from 1.68 to 1.23 V/μm. The field enhancement factor was calculated to increase by 23% according to Fowler–Nordheim (F–N) equation. The number of emission sites also increased and their distribution was more uniform.  相似文献   

19.
周昕  方见树  杨迪武  廖湘萍 《中国物理 B》2012,21(8):84202-084202
We theoretically investigate the transmission spectra and the field distributions with different defects in the gold nanotube arrays by using the finite-difference time-domain method.It is found that the optical properties of the nanotube arrays are strongly influenced by different defects.When there are no defects in the central nanotube,the values of peaks located at both sides of the photonic band gap have their maxima.Based on the distributions of electric field component E x and the total energy distribution of the electric and the magnetic field,we show that mainly a dipole field distribution is exhibited for the plasmon mode at the long-wavelength edge of the band gap but higher order modes of the composite are excited at the short-wavelength edge of the band gap.The plasmon resonant modes can also be controlled by introducing defects.  相似文献   

20.
The effects of transverse electric field on the electronic structures, exciton states and excitonic absorption spectra in a cylindrical quantum wire are theoretically investigated in detail. The quantum wire is assumed to GaAs material surrounded by the infinite potential barrier. The results show that the external electric field removes the degeneracy of the electron or hole states. The energy levels of electron and hole, exciton binding energy, excitonic absorption coefficient and absorption energy decrease with increasing the strength of the electric field or the wire radius. The effects of the electric field become more significant for wide wires. The phenomena can be explained by the reduced spatial overlap of ground electron and hole states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号