首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Blends of poly(2,6-dimethyl 1,4-phenylene oxide) (PPhO) with the copolymer poly(styrene-co-methacrylic acid) (PS-MAA) and the ionomer poly(styrene-co-sodium methacrylate) (PS-MAA-Na), up to 10 mol% co-unit content, were investigated by dynamic mechanical thermal measurements. The PPhO/PS-MAA-Na blends are compared with PS/PS-MAA-Na blends. The blends of PPhO with PS-MAA are no longer miscible at 10 mol% acid content; this is attributed to a copolymer effect induced by the reduction of PS-PPhO interactions due to the presence of the MAA group which does not interact favorably with PPhO. The blends of PPhO with the ionomer are already immiscible at the lowest ion content studied (2.4 mol%), but become increasingly so as ion content is increased. Despite favorable PS-PPhO interactions, these blends are only a little more miscible than the PS/PS-MAA-Na blends. This is attributed to a combination of the increasing importance of the ionomer cluster phase (from which the homopolymer chains presumably are excluded) as ion content is increased, and of a copolymer effect between the homopolymers and the unclustered phase of the ionomer. These results are compared with published data indicating that blends of PPhO with another biphasic ionomer, zinc sulfonated polystyrene, are miscible. The contrasting behavior is rationalized in part by the suggestion that the copolymer effect between PPhO and the unclustered phase of the latter ionomer, but not of the former, is absent; this is related to multiplet structure and sizes. The analysis made of the above systems is extended to predict what might be the miscibility behavior between PPhO and other PS-based ionomer and related copolymer systems. © 1993 John Wiley & Sons, Inc.  相似文献   

2.
Molecular relaxation behavior in terms of the α, β, and γ transitions of miscible PS/PPO blends has been studied by means of DMTA and preliminary work has been carried out using DSC. From DSC and DMTA (by tan δ), the observed α relaxation (Tα or Tg) of PS, PPO, and the blends, which are intermediate between the constituents, are in good agreement with earlier reports by others. In addition, the β transition (Tβ) of PS at 0.03 Hz and 1 Hz is observed at −30 and 20°C, respectively, while the γ relaxation (Tγ) is not observed at either frequency. The Tβ of PPO is 30°C at 0.03 Hz and is not observed at 1 Hz, while the Tγ is −85°C at 0.03 Hz and −70°C at 1 Hz. On the other hand, blend composition-independent β or γ relaxation observed in the blends may be a consequence of the absence of intra- or intermolecular interaction between the constituents at low temperature. Thus it is suggested that at low temperature, the β relaxation of PS be influenced solely by the local motion of the phenylene ring, and that the β or γ relaxation of PPO be predominated by the local cooperative motions of several monomer units or the rotational motion of the methyl group in PPO. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1981–1986, 1998  相似文献   

3.
Blends of organosilicon polymers with polystyrene, PS, and poly(2,6-dimethyl-1,4-phenylene oxide), PPE, were investigated by transmission electron microscopy and differencial scanning calorimetry. Blends with poly(tetramethylsilphenylenesiloxane), PTMPS, showed a morphology characterized by globular domains dispersed in the organic matrix. An apparent homogeneous system was observed when poly(dimethylsilphenylene), PDSP, was mixed with PPE. A crystalline phase was found in samples with a higher PDSP content. The morphology of PS/PDSP blends with low PDSP content showed a dendritic phase dispersed in the PS-rich matrix. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 2609–2616, 1997  相似文献   

4.
Fluorination of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) leads to narrowing of its window of electrochemical stability in a cathodic range of potentials. It is found this is connected with appearance of both perfluorinated and incompletely fluorinated units in the polymer. The former units are liable to electrochemical reduction (at potentials <−2.0 V) followed by elimination of fluorine anions and the latter react with basic products (generated at potentials <−1.8 V) of electrochemical reduction of the background solution. In the both cases this results in appearance of conjugated multiple bonds in the fluorinated macromolecules. Quantities of these units in fluorinated PPO were determined with a help of direct and indirect electrochemical reductive degradation techniques.  相似文献   

5.
The chemical modification of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) by bromination of the aromatic ring, followed by displacement of bromine with substituted acetylenes, has been investigated. This pathway leads to a series of novel copolymers containing substituted alkynes on the aromatic ring. The degree of bromination and alkynylation, determined by 1H-NMR, was in the range of 20–85 and 15–80%, respectively. 13C-NMR and FT-IR unambiguously elucidated the structure of the alkynylated polymers. Finally, thermal properties and permeation properties of substituted PPO to carbon dioxide, methane, oxygen, and nitrogen are reported. © 1994 John Wiley & Sons, Inc.  相似文献   

6.
 Upper-critical-solution-temperature (UCST) behavior in a ternary blend of poly(2,6-dimethyl-1,4-phenylene oxide), poly(4-methyl styrene), and polystyrene is reported. The as-cast ternary blend is immiscible at ambient conditions and comprises two different phases, and, however, turns into a miscible system above the “clarity point” ranging from 160 to 300 °C for different ternary compositions. The maximum clarity point is labeled as the UCST for the ternary system, which is about 295 °C. Above the clarity point, the originally immiscible ternary blend turned into one miscible phase. Owing to the thermodynamic UCST behavior and kinetic hindrance, the immiscible ternary polymer blend can be locked into a pseudo-miscible state if it is heated to a temperature above the clarity point followed by a rapid-cooling processing scheme. The quenched ternary blend can remain in a pseudo-miscible state as long as the service temperature does not exceed the glass-transition temperature of the blend. Received: 17 July 2001 Accepted: 3 October 2001  相似文献   

7.
8.
Considering the defect of solution polymerization of 2,6-dimethylphenol (DMP), the low molecular weight of poly(2,6-dimethyl-1,4-phenylene oxide) (PPO) synthesized in water and difficulty in processing of PPO, a novel one-pot synthetic method for preparing PPO/PS alloy in reactor containing aqueous medium was proposed based on green chemistry. In the presence of styrene, DMP was polymerized to form PPO, and then styrene was in situ polymerized under the initiation of dibenzoyl peroxide (BPO) and dicumyl peroxide (DCP), finally thermodynamically compatible PPO/PS alloy was prepared. It was found that the introduction of styrene during the oxidative polymerization of DMP could increase the molecular weight of PPO. When styrene content was 50 wt%, for the synthesized PPO/PS alloy the yield and the weight-average molecular weight were determined to be 95% and 1.7 × 105 for PPO, 93% and 2.0 × 105 for PS, respectively.  相似文献   

9.
The compatibilizing effects of a styrene-4-vinyl pyridine diblock copolymer on the properties of immiscible poly(2,6-dimethyl-1,4-phenylene ether) (PPE)/polyethylene ionomer (Surlyn) blends are investigated by examining the phase morphology and the thermal and mechanical properties. The block copolymer is synthesized by sequential anionic polymerization at ?78°C and melt-mixed with PPE and Surlyn at 290°C. When a small amount of block copolymer is present, the domain size of the dispersed phase becomes smaller. The tensile strength and elongation at break increase with addition of the block copolymer for PPE-rich matrix blends, whereas the tensile strength increases but the elongation at break decreases for Surlyn-rich matrix blends. These effects are interpreted in terms of the interfacial activity and the reinforcing effect of the block copolymer. From the experimental results, it is concluded that the block copolymer plays a role as an effective compatibilizer for PPE/Surlyn blends. © 1994 John Wiley & Sons, Inc.  相似文献   

10.
Change in the glass transition temperature, Tg, of poly(2,6-dimethyl phenylene oxide), PPO, due to the dissolved CO2 has been measured as a function of the gas pressure, p, using a high-pressure DSC cell. At 61.2 atm, the highest pressure studied, Tg is depressed by 31.6°C. The depression in Tg is found to be linear with pressure, with dTg/dp of ?0.5°C atm?1. The experimental results are in fair agreement with those calculated from a quasilattice solid-solution model for polymer-diluent systems. The present results, however, differ markedly from a recent investigation on PPO-CO2 system which reported a depression in Tg of 226°C at 60 atm and a dTg/dp of ?3.8°C atm?. © 1994 John Wiley & Sons, Inc.  相似文献   

11.
Two stereoisomeric poly(2-benzoyl-1,4-phenylene)s were synthesized. Polymer I has exclusively a head-to-tail structure; however, polymer II contains both head-to-head and head-to-tail units. The sulfonation reaction of polymers I and II was found to occur mainly on the meta position of the benzoyl group on the phenylene backbone. The viscosities of polymers Ia (27% sulfonated) and Ic (51% sulfonated) in aqueous solutions at 25°C were measured with and without NaBr addition. Upon the addition of NaBr (0.05 and 0.1M), the reduced viscosities were found to increase gradually and reach a constant value in each case after standing at room temperature for 30–40 h. Without NaBr, the time effect was not found. The reduced viscosities of solutions with NaBr were also higher than those without the salt. These results are quite different from the typical “polyelectrolyte” behavior. A possible explanation of the salt effect of rigid rodlike polymers such as sulfonated poly(2-benzoyl-1,4-phenylene) is discussed. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 1425–1429, 1998  相似文献   

12.
We present a detailed investigation of the kinetics associated with the glass transitions of miscible blends composed of atactic polystyrene (a‐PS) and poly(2,6‐dimethyl‐1,4‐phenylene oxide) (PPO). According to both dynamic mechanical analysis and differential scanning calorimetry, relaxation times displayed an enhanced temperature dependence (i.e., more fragile or more cooperative behavior) for the blends compared with additive behavior based on the responses of neat a‐PS and PPO. This is consistent with the notion that specific interactions between the blend components heighten the intermolecular cooperativity. The compositional dependence of fragility provided insight into physical aging results for the properties of volume and enthalpy. The combination of our research and a previously reported pressure–volume–temperature study by Zoller and Hoehn (J Polym Sci Polym Phys Ed 1982, 20, 1385) provided evidence that the observation of increased glassy densities for the blends compared with those of the pure polymers was kinetic in origin and was not a feature of the thermodynamics of miscibility. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2118–2129, 2001  相似文献   

13.
14.
The effect of substituents on the electropolymerization of benzene derivatives and the redox properrties of the corresponding polymers were determined using Brown's substituent constants (σ+). Electron-donating groups lower the oxidation potential by which increase in the current efficiency was observed. However, stabilization of the produced cation radicals by the electron-donating groups resulted in a decrease in the polymerization efficiency. The appropriate values of σ+ for the efficient polymerization ranged near ?1.5.  相似文献   

15.
The effects of transesterification on the miscibility of poly(ethylene terephthalate)/poly(ethylene 2,6-naphthalate) were studied. Blends were obtained by solution precipitation at room temperature to avoid transesterification during blend preparation. The physical blends and transesterified products were analyzed by wide-angle x-ray scattering, differential scanning calorimetry, and nuclear magnetic resonance spectroscopy. It was found that the physical blends are immiscible and when the extent of transesterification reaches 50% of the completely randomized state, independent of blend composition, the blends are not crystallizable and show a single glass transition temperature between those of starting polymers. The interchange reactions were significantly influenced by annealing temperature and time but negligibly by blend composition. © 1996 John Wiley & Sons, Inc.  相似文献   

16.
Thermal oxidation of poly(ethylene oxide) (PEO) and its blends with poly(methyl methacrylate) (PMMA) were studied using oxygen uptake measurements. The rates of oxidation and maximum oxygen uptake contents were reduced as the content of PMMA was increased in the blends. The results were indicative of a stabilizing effect by PMMA on the oxidation of PEO. The oxidation reaction at 140°C was stopped at various stages and PMMA was separated from PEO and its molecular weights were measured by gel permeation chromatography (GPC). The decrease in the number-average molecular weight of PMMA was larger as the content of PEO increased in the blends. The visual appearance of the films suggested that phase separation did not occur after thermal oxidation. The activation energy for the rates of oxidation in the blends was slightly increased compared to pure PEO. © 1992 John Wiley & Sons, Inc.  相似文献   

17.
The miscibility and thermal properties of polyethylene oxide(PEO)/oligoester resin (OER) blends and PEO/crosslinked polyester (PER) blends were studied by differential scanning calorimetry (DSC). The effect of quenching process on the crystallization behavior of PEO for these two systems were investigated and discussed in details. It has been found that a single, composition dependent glass transition temperature (Tg) was observed for all the blends, indicating that the two systems are miscible in the amorphous state at overall compositions. From the melting point depression of PEO, the interaction parameter χ12 for PEO/OER blends and that for PEO/PER blends were found to be −1.29 and −2.01, respectively. The negative values of χ12 confirmed that both PEO/OER blends and PEO/PER blends are miscible in the molten state. Quenching process has a greater hindrance on the crystallization of PEO/OER blends than on that of PEO/PER blends. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35: 3161–3168, 1997  相似文献   

18.
2,3,4,5,6-Pentafluoroformanilide was prepared giving, in addition, two new compounds 4,5,6,7-tetrafluoro-1-pentafluorophenyl-benzimidazole and 2,3,4,5-tetrafluoro-6-[(pentafluorophenyl)amino]formanilide. Sodium 2,3,4,5,6-pentafluoro-formanilide was reacted with hexafluorobenzene in a molar ratio of 1:4 to give oligomers of α-pentafluorophenyl-ω-fluoro-poly(imino-tetrafluoro-1,4-phenylene). Some of the oligomers were isolated. The results indicate that poly(imino-tetrafluoro-1,4-phenylene) could be formed. Model reaction on hexafluorobenzene with sodium acetanilide, molar ratio 1:2, gave a low yield of N,N′-diacetyl-diphenyl-tetrafluoro-1,4-phenylenediamine.  相似文献   

19.
黄玉惠  刘彦 《应用化学》1991,8(5):37-41
研究了磺化度为20.9mol%的磺化聚苯醚(S-PPO)的钠盐和锂盐在四氢呋喃/甲醇混合溶剂中的离聚体行为。S-PPO离聚体在溶液中的链聚集状态与聚合物浓度、阳离子半径密切相关。当Na-SPPO的浓度高于3g/dL时,在30~40℃范围内其聚集度DA与浓度C的关系为:DA=ke~(εc)常数K和β分别表示为与发现链聚集的起始浓度和链聚集速率相关的常数。  相似文献   

20.
In this paper we report polymer light-emitting diodes based on (2,3-diphenyl-1,4-phenylene vinylene) (DP-PPV), a novel π-conjugated polymer made by using the chlorine precursor route (CPR). Thin films of the precursor polymer were formed by spin-casting on indium-tin oxide (ITO) coated glass substrates, followed by thermal conversion to give DP-PPV thin films. Single layer DP-PPV LEDs were completed by thermally evaporating magnesium (Mg) electrodes. The electroluminescent characteristics of ITO/DP-PPV/Mg devices as well as variations between precursor polymer batches are presented. Bilayer LEDs were also made, for which tris(8-hydroxyquinoline)aluminum (Alq3) was thermally sublimed on the fully converted DP-PPV films in vacuum, followed by Mg deposition. Both significant improvement in the quantum efficiency (up to 0.7% ph/el) and a reduction in the turn-on voltage of the device were found upon incorporation of the Alq3 layer. These observations suggest that Alq3 enhances the injection of electrons and also participates in the recombination process. © 1997 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号