首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
旋翼尾流与地面干扰时地面涡现象的研究   总被引:1,自引:0,他引:1  
康宁  孙茂 《力学学报》1998,30(5):615-620
用N-S方程对近地飞行时旋翼尾流与地面干扰时产生的地面涡现象进行了数值计算旋翼对流场的作用由分布在特定区域内的动量源项模拟结果表明,旋翼尾流撞到地面后的卷起和轴向流动的拉伸作用是形成地面涡的原因;地面边界层形成的二次分离涡向地面涡内输入(与尾流所携带的涡量)相反的涡量,而使地面涡保持平衡;地面涡的存在和运动使旋翼附近流场大大改变  相似文献   

2.
Time-variant data are obtained to investigate the exit flow field from a rotor in a research compressor. In the free-stream region, the instantaneous data are analogous to one another and to the ensemble averaged free-stream results. However, in the wake region, some of the instantaneous signals are similar to one another and to the ensemble averaged wake, but others differ significantly. These variations in the instantaneous data are interpreted and shown to be due to a vortex street structure in the wake. This is accomplished by: (1) developing a mathematical model of the rotor blade exit flow field based on a wake vortex street structure analogous to the unsteady flow field behind bluff bodies due to classical von Karman vortex shedding; and (2) correlating predictions of both the ensemble averaged and instantaneous rotor blade exit flow fields as well as the velocity probability density distributions from this vortex wake flow field model with the corresponding data. The correlation of the ensemble averaged rotor blade exit flow fields is very good and the flow angle distribution correlation excellent. The predicted instantaneous rotor blade exit flow field exhibits many of the flow features found in the data. Also, the probability density distributions for the data and the vortex wake flow field model are analogous to one another.List of symbols N number of rotor revolutions - S w rotor blade wake width - S x vortex core horizontal spacing - S y vortex core vertical spacing - u velocity component parallel to vortex street motion - v velocity component normal to vortex street motion - W instantaneous relative velocity - W i velocity induced by vortex street - W free-stream relative velocity - W s velocity of vortex street - x coordinate parallel to vortex street motion - y coordinate normal to vortex street motion - free-stream relative flow angle - inst instantaneous relative flow angle - vortex strength  相似文献   

3.
 An experimental investigation was made to study the aperiodic flow characteristics of the tip vortices generated by one-bladed and two-bladed hovering rotors. Measurements of the tip vortex locations and accompanying aperiodicity statistics were established as a function of vortex age. Velocity field measurements were made using three-component laser Doppler velocimetry. The average amplitude of the aperiodicity was found to be a fraction of the measured viscous core radius, this being approximately 5% of blade chord or about 50% of the core radius for wake ages of less than two rotor revolutions. The aperiodicity appeared isotropic. A numerical analysis of the aperiodicity problem based on convolution with an assumed displacement probability function showed that for this experiment the measured tangential velocities in the tip vortices were underestimated by approximately 20% and the viscous core radii were overestimated by 20%. There was no evidence that the number of blades or the blade passage adversely influenced the aperiodicity of the rotor tip vortices. Received: 22 August 1997/Accepted: 4 February 1998  相似文献   

4.
许波峰  刘冰冰  冯俊恒  左潞 《力学学报》2019,51(5):1530-1537
涡核模型中的涡核尺寸对自由涡尾迹(free vortex wake,FVW)方法准确预估风力机气动特性至关重要,涡核尺寸包括初始涡核半径和由于耗散效应涡核半径在尾迹中的增长.FVW方法中涡线控制方程离散采用三步三阶预估校正格式,涡核模型采用经典Lamb-Oseen模型,并考虑了涡耗散效应和拉伸效应.首先,通过气动载荷和叶尖涡涡量平均值的分析得到初始涡核半径的取值范围;然后,根据叶尖涡耗散特性的分析,确定体现涡黏性耗散效应涡核半径增长的经验常数的取值;最后,分析了涡核尺寸对叶尖涡结构的影响,进一步验证初始涡核半径和涡黏性耗散经验常数的取值对风力机气动计算的影响.结果表明:当初始涡核半径大于50%弦长时,FVW方法收敛稳定且能准确预估风轮气动载荷;综合风轮气动载荷和叶尖涡耗散特性,初始涡核半径取60%到70%弦长为宜,且对应的涡黏性耗散经验常数取值也不同;风轮气动载荷和叶尖涡结构的准确预估主要受初始涡核半径影响,经验常数对其影响不大,而经验常数主要影响风轮下游尾流场叶尖涡的耗散特性.   相似文献   

5.
This paper presents the results of an experimental investigation on the near field of a tip vortex generated by a blade at moderate incidence. The experiments were conducted at Re=15 000 and the boundary layer over the blade separated around midchord on the upper surface. Laser-Doppler measurements of the turbulent flow (Tu=1.5%) were performed at various stations downstream of the blade. The three components of the mean velocity field and turbulent attributes were quantified at cross-planes, characterizing both the blade wake and the tip vortex structure. This allowed the analysis of the rollup and initial stages of decay of the tip vortex in the light of known theories and models. The axial velocity defect at the center of the vortex core evolved as x−1 log x, without displaying any significant outgrowth imposed by the separated flow upstream. Momentum balances were also carried out at a station downstream to the conclusion of vortex rollup. The approximate axisymmetry of the flow field in the trailing vortex was used to formulate the balances in a cylindrical coordinate system. Among other observations, it was seen that an adverse axial pressure gradient developed in the vortex core, which reinforced the tenacity of the axial velocity defect. In contrast, an area influenced by a favorable pressure gradient was found outside the core.  相似文献   

6.
The compressible blade tip vortex of rotary wings has been the subject of numerous investigations and its importance for the understanding of the helicopter flow field has been clearly emphasised. Due to its great impact on the dynamics of the flow field, the investigation of the tip vortex is directly linked to issues of flow control and aeroacoustic optimisation. However, among velocity field data, additional core density information on the blade tip vortex is desirable with a view to vortex modelling. In this work we describe an airborne background oriented Schlieren system for full-scale helicopter flight tests as well as the first results of the tomographic reconstruction of the compressible vortex core. We report the measurements of both a 0.4 Mach-scaled rotor model of the MBB BO 105 and the corresponding full-scale helicopter in hover flight condition. The tomographic reconstruction of the data allows us to estimate the density and the radius for the viscous core.  相似文献   

7.
Determination of the aerodynamic configuration of wake is the key to analysis and evaluation of the rotor aerodynamic characteristics of a horizontal-axis wind turbine.According to the aerodynamic configuration, the real magnitude and direction of the onflow velocity at the rotor blade can be determined, and subsequently, the aerodynamic force on the rotor can be determined. The commonly employed wake aerodynamic models are of the cylindrical form instead of the actual expanding one. This is because the influence of the radial component of the induced velocity on the wake configuration is neglected. Therefore, this model should be called a "linear model". Using this model means that the induced velocities at the rotor blades and aerodynamic loads on them would be inexact. An approximately accurate approach is proposed in this paper to determine the so-called "nonlinear" wake aerodynamic configuration by means of the potential theory,where the influence of all three coordinate components of the induced velocity on wake aerodynamic configuration is taken into account to obtain a kind of expanding wake that approximately looks like an actual one. First, the rotor aerodynamic model composed of axial(central), bound, and trailing vortexes is established with the help of the finite aspect wing theory. Then, the Biot-Savart formula for the potential flow theory is used to derive a set of integral equations to evaluate the three components of the induced velocity at any point within the wake. The numerical solution to the integral equations is found,and the loci of all elementary trailing vortex filaments behind the rotor are determined thereafter. Finally, to formulate an actual wind turbine rotor, using the nonlinear wake model, the induced velocity everywhere in the wake, especially that at the rotor blade,is obtained in the case of various tip speed ratios and compared with the wake boundary in a neutral atmospheric boundary layer. Hereby, some useful and referential conclusions are offered for the aerodynamic computation and design of the rotor of the horizontal-axis wind turbine.  相似文献   

8.
Two oscillating flaps located close to the tip and at mid span are used to excite the unstable modes of the tip vortex system of a wind turbine blade. The two flaps are deflected in opposite directions such that the root bending moment of the wind turbine blade remains almost unchanged. To investigate the mechanism of how and to what extent the deflection of the flaps influences the tip-vortex system, Large-Eddy Simulations in the Arbitrary Lagrangian-Eulerian formulation in a rotating frame of reference are performed at an averaged chord based Reynolds number of 300,000. Periodic boundary conditions are applied in the circumferential direction such that the flow over only one of the three blades of the wind turbine needs to be computed. A subsequent simulation of the trailing tip-vortex system is performed to analyze the evolution of the disturbed tip vortex. These simulations use a far-wake model based on the parameters obtained from the wind turbine simulation as inflow condition for the wake flow field. The comparison of the flow without and with oscillating flaps shows that the tip-vortex core is displaced by approximately 5% of the rotor radius by the flap motion. The root bending moment and torque at the root of the blade with flaps vary sinusoidally. Due to the compensation by the middle span flap, the difference of the root bending moment and torque is found to be less than 5% compared to the case without moving flaps. The simulations of trailing tip vortex show considerably earlier breakdown of the excited system, which proves the concept to excite instabilities in the vortex system by oscillating flaps successful.  相似文献   

9.
In this paper, a block incomplete lower–upper (BILU) decomposition method is incorporated with a multiblock three‐dimensional Euler/Navier–Stokes solver for simulation of hovering rotor tip vortices and rotor wake convection. Results of both Euler and Navier–Stokes simulations are obtained and compared with experimental observations. The comparisons include surface pressure distributions and tip vortex trajectories. The comparisons suggest that resolution of the boundary layer is important for the accurate evaluation of the blade surface loading, but is less so for the correct prediction of the vortex trajectory. Numerical tests show that, using Courant–Friedrichs–Lewy (CFL) number of 10 or 30 with the developed BILU implicit scheme can be 6–7 times faster than an explicit scheme. The importance of solution acceleration schemes that increase the permitted time‐step is illustrated by comparing the evolving wake structures at different stages of the calculation. In contrast to fixed wing simulations, the extent of the wake structures is shown to require resolution of large physical time. This observation explains the poor performance that is obtained when employing convergence acceleration strategies originally intended for solution of equilibrium problems, such as the multigrid methods. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

10.
The flow field around a helicopter is characterised by its inherent complexity including effects of fluid?Cstructure interference, shock?Cboundary layer interaction, and dynamic stall. Since the advancement of computational fluid dynamics and computing capabilities has led to an increasing demand for experimental validation data, a comprehensive wind tunnel test campaign of a fully equipped and motorised generic medium transport helicopter was conducted in the framework of the GOAHEAD project. Different model configurations (with or without main/tail rotor blades) and several flight conditions were investigated. In this paper, the results of the three-component velocity field measurements around the model are surveyed. The effect of the interaction between the main rotor wake and the fuselage for cruise/tail shake flight conditions was analysed based on the flow characteristics downstream from the rotor hub and the rear fuselage hatch. The results indicated a sensible increment of the intensity of the vortex shedding from the lower part of the fuselage and a strong interaction between the blade vortex filaments and the wakes shed by the rotor hub and by the engine exhaust areas. The pitch-up phenomenon was addressed, detecting the blade tip vortices impacting on the horizontal tail plane. For high-speed forward flight, the shock wave formation on the advancing blade was detected, measuring the location on the blade chord and the intensity. Furthermore, dynamic stall on the retreating main rotor blade in high-speed forward flight was observed at r/R?=?0.5 and 0.6. The analysis of the substructures forming the dynamic stall vortex revealed an unexpected spatial concentration suggesting a rotational stabilisation of large-scale structures on the blade.  相似文献   

11.
A third‐order mesh generation and adaptation method is presented for solving the steady compressible Euler equations. For interior points, a third‐order scheme is used on Cartesian and curvilinear meshes. Concerning the mesh adaptation, the method of Meakin is also extended to third order. The accuracy of the new overset mesh adaptation method is demonstrated by a grid convergence study for 2‐D inviscid model problems and results are compared with a second‐order method. Finally, the method is applied to the computation of an inviscid 3‐D flow around a hovering blade of the ONERA 7A helicopter rotor exhibiting an improvement in the wake capture. With a 7 million point mesh, the tip vortex can be followed for more than three rotor revolutions with the third‐order method. The CPU time needed for this calculation is only 3% higher than with a conventional second‐order method. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

12.
Interaction between a vortex ring and a vortex filament of the same strength has been simulated by a three-dimensional vortex method which employs vortex arrows with the Rosenhead-Moore core structure. The power spectrum of the velocity field and the enstrophy spectrum are obtained in a closed form whose limit of the core radius tending to zero is equivalent to that given be Aksman et al. (1985) Phys. Rev. Lett. 54. 2410. Four basic modes of the interaction are shown to exist. Temporal evolution of the spectrum during the interaction is also obtained for the basic modes: the energy of the velocity field is generally transferred to the high-wavenumber range as the interaction proceeds.  相似文献   

13.
Detailed flow measurements at the inlet of a centrifugal compressor vaneless diffuser are presented. The mean 3-d velocities and six Reynolds stress components tensor are used to determine the turbulence production terms which lead to total pressure loss. High levels of turbulence kinetic energy were observed in both the blade and passage wakes, but these were only associated with high Reynolds stresses in the blade wakes. For this reason the blade wakes mixed out rapidly, whereas the passage wake maintained its size, but was redistributed across the full length of the shroud wall. Peak levels of Reynolds stress occurred in regions of high velocity shear and streamline curvature which would tend to destabilize the shear gradient. Four regions in the flow are identified as potential sources of loss - the blade wake, the shear layers between passage wake and jet, the thickened hub boundary layer and the interaction region between the secondary flow within the blade wake and the passage vortex. The blade wakes generate most turbulence, with smaller contributions from the hub boundary layer and secondary flows, but no significant contribution is apparent from the passage wake shear layers.  相似文献   

14.
Wake vortex flow experiments are performed in a water tank where a 1:48 scaled model of a large transport aircraft A340-300 is towed at the speed of 3 and 5 ms-1 with values of the angle of attack !={2°, 4°, 8°}. Particle image velocimetry (PIV) measurements are performed in a plane perpendicular to the towing direction describing the streamwise component of the wake vorticity. The instantaneous field of view (I-FOV) is traversed vertically with an underwater moving-camera device tracking the vortex core during the downward motion. An adaptive resolution (AR) image-processing technique is introduced that enhances the PIV interrogation in terms of spatial resolution and accuracy. The main objectives of the investigation are to demonstrate the applicability of PIV diagnostics in wake vortex research with towing-tank facilities. The specific implementation of the traversing field-of-view (T-FOV) technique and the AR image processing are driven by the need to characterize the vortex wake global properties as well as the vortex decay phenomenon in the mid- and far-field. Relevant aerodynamic information is obtained in the mid-field where the time evolution of the vortex structure (core radius and tangential velocity) and of the overall vortex wake (vortex trajectory, descent velocity, circulation) are discussed.  相似文献   

15.
The time-averaged velocity and streamwise vorticity fields within the wake of a stack were investigated in a low-speed wind tunnel using a seven-hole pressure probe. The experiments were conducted at a Reynolds number, based on the stack external diameter, of ReD=2.3×104. The stack, of aspect ratio AR=9, was mounted normal to a ground plane and was partially immersed in a flat-plate turbulent boundary layer, where the ratio of the boundary layer thickness to the stack height was δ/H≈0.5. The jet-to-cross-flow velocity ratio was varied from R=0 to 3, which covered the downwash, crosswind-dominated and jet-dominated flow regimes. In the downwash and crosswind-dominated flow regimes, two pairs of counter-rotating streamwise vortex structures were identified within the stack wake. The tip vortex pair located close to the free end of the stack, and the base vortex pair located close to the ground plane within the flat-plate boundary layer, were similar to those found in the wake of a finite circular cylinder, and were associated with the upwash and downwash flow fields within the stack wake, respectively. In the jet-dominated flow regime, a third pair of streamwise vortex structures was observed, referred to as the jet-wake vortex pair, which occurred within the jet-wake region above the free end of the stack. The jet-wake vortex pair had the same orientation as the base vortex pair and was associated with the jet rise. The peak vorticity and strength of the streamwise vortex structures were functions of the jet-to-cross-flow velocity ratio. For the tip vortex structures, their peak vorticity and strength reduced as the jet-to-cross-flow velocity ratio increased.  相似文献   

16.
A phase sampling procedure is used for the analysis of the non-steady, periodic flow field in the near wake of a marine propeller. This method allows to obtain a true ensemble averaging of the experimental measurements. The average is made over a large number of repeated experiments each of which is taken during a complete revolution of the propeller. The measurements are carried out in a recirculating water tunnel with a two-channel laser Doppler velocimeter. The computer-aided evaluation of the experimental results visualizes the following characteristic features of the wake: (1) the vortex sheet developing from the trailing edge; (2) a sudden increase of the axial velocity in the core of the tip vortex; (3) a boundary layer effect near the shaft of the propeller. From the analysis of the direction of vortex rotation along the radial direction of the blade, it is possible to derive information on the working conditions of the propeller.  相似文献   

17.
The paper first summarizes the forced response problem in turbomachinery and reviews various numerical methods for the simulation of unsteady flows. A particular technique, based on the linearisation of the unsteady Favre-averaged Navier-Stokes equations on three-dimensional mixed-element grids of tetrahedra, hexahedra and wedges, is described in some detail. The methodology was applied to a NGV/rotor interaction benchmark case for which detailed steady and unsteady flow measurements are available. The steady-state flow, calculated using a non-linear viscous representation, was described in detail with emphasis on features such as separation, horseshoe and passage vortices, tip leakage and shock structure since these are likely to influence the unsteady flow. The sources of unsteadiness on the rotor passage were evaluated from the steady-state solution at the NGV outlet. The disturbances were split into vortical, entropic and potential waves, the Fourier components of which were considered separately. The summation of the vortical and entropic waves was used as a rotor inlet boundary condition in order to assess the wake/rotor unsteady interaction. Similarly, potential waves were used to study the potential/rotor interaction. The results obtained from these two types of unsteady interactions were superimposed and compared with experimental data. Good qualitative and, in most cases, quantitative agreement was obtained, a finding which suggests that the unsteady flowfield generated by the relative blade motion can be considered to be a quasi-linear phenomenon for the particular HP turbine studied. Finally, the mechanisms of wake/rotor and potential/rotor interactions were studied in some detail and it was concluded that the former was strong in the crown of the blade while the latter was dominant in the leading edge region.  相似文献   

18.
The relative motion of rotor and stator blade rows in a turbomachine generates periodically unsteady flow on the blades due to travelling wake perturbations. To better understand the attendant wake–boundary-layer interaction a calculation procedure was developed to model the behaviour of this complex unsteady flow. Due to nonlinear interactions with the boundary layer, the travelling discrete frequency wakes were found to decrease the velocity profile shape factor. For the range of reduced frequencies examined (=0.33–9.33) the skin-friction coefficient was found to be frequency dependent. The calculated results for both steady and unsteady velocity profiles, and for skin friction compared well with experimental data. Although the agreement between measured and calculated velocity phase shift was poor, in both experimental and model results the negative phase shift throughout the boundary layer due to the travelling-wave fluctuations has been captured.  相似文献   

19.
研究了Kirchhoff积分面是否有盖有底,以及是否计及旋翼网格上的流场值,这两个因素对噪声预测结果的影响.发展了一种基于重叠网格的计算悬停旋翼远场噪声的数值方法.数值计算过程分为流场模拟和声场模拟两部分.悬停旋翼流场的数值模拟是在两个相互重叠的网格上进行的:在高质量的旋翼网格上求解Navier-Stokes方程,用于模拟旋翼附近的粘性流动和近场尾涡的捕捉;在远离粘性区域处布置符合悬停流场物理特征的圆柱形背景网格,控制方程为Euler方程,用于远场尾涡的捕捉.计算得到的流场信息插值到用于声场计算的Kirchhoff积分面上.观测点处的噪声可以认为是由这个完全包含桨叶的Kirchhoff积分面上的面元(声源)发声得到.远场声波的传播由Kirchhoff积分公式描述.计算结果表明:采用有盖有底的Kirchhoff积分面并且同时计及旋翼网格流场值时,计算得到的HSI噪声与实验值吻合最好.  相似文献   

20.
A stereoscopic PIV (Particle Image Velocimetry) technique was used to measure the three-dimensional flow structure of the turbulent wake behind a marine propeller with five blades. The out-of-plane velocity component was determined using two CCD cameras with an angular displacement configuration. Four hundred instantaneous velocity fields were measured for each of four different blade phases, and ensemble averaged in order to find the spatial evolution of the propeller wake in the region from the trailing edge up to one propeller diameter (D) downstream. The influence of propeller loading conditions on the wake structure was also investigated by measuring the velocity fields at three advance ratios (J=0.59, 0.72 and 0.88). The phase-averaged velocity fields revealed that a viscous wake formed by the boundary layers developed along the blade surfaces. Tip vortices were generated periodically and the slipstream contracted in the near-wake region. The out-of-plane velocity component and strain rate had large values at the locations of the tip and trailing vortices. As the flow moved downstream, the turbulence intensity, the strength of the tip vortices, and the magnitude of the out-of-plane velocity component at trailing vortices all decreased due to effects such as viscous dissipation, turbulence diffusion, and blade-to-blade interaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号