首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
trans-3-Methyl-4-(p-anisyl)-1,2-dioxetane 1, trans-3-methyl-4-(o-anisyl)-1,2-dioxetane 2 , 3-methyl-3-benzyl-1,2-dioxetane 3 , and 3-methyl-3-p-methoxybenzyl-1,2-dioxetane 4 were synthesized in low yield by the β-bromo hydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔG≠ = 22.8 ± 0.3 kcal/mol, Δ≠ = 22.2, ΔS≠ = −1.7 e.u., k60 = 7.6 × 10−3s−1; for 2 ΔG≠ + 23.6 ± 0.3 kcal/mol, ΔH≠ = 22.8, ΔS≠ = −2.2 e.u., k60 = 2.5 × 10−3S−1; for 3 ΔG≠ = 24.0 ± 0.4 kcal/mol, ΔH≠ = 23.1, ΔS≠ = −2.7 e.u., k60 = 1.2 × 10−3S−1; for 4 ΔG≠ = 24.0 ± 0.2 kcal/mol, ΔH≠, = 23.2, ΔS≠, = −2.4 e.u., k60 = 1.2 × 10−3s−1). Thermolysis of 1–4 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) [chemiexcitation yields ϕT, ϕS, respectively: for 1 0.02, 0.0001; for 2 0.02, 0.0001; for 3 0.03, 0.0002; for 4 0.02, 0.0001]. The effect of paramethoxyaryl substitution was consistent with electronic effects. The ortho substitution in 2 resulted in an increase in stability of the dioxetane, opposite that observed for an electronic effect. The results are discussed in relation to a diradical-like mechanism.  相似文献   

2.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕS ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:176–179, 2001  相似文献   

3.
The reaction of tetramethyl-1,2-dioxetane ( 1 ) and triphenylphosphine ( 2 ) in benzene-d6 produced 2,2-dihydro-4,4,5,5-tetramethyl-2,2,2-triphenyl-1,3,2-dioxaphospholane ( 3 ) in ?90% yield over the temperature range of 6–60°. Pinacolone and triphenylphosphine oxide ( 4 ) were the major side products [additionally acetone (from thermolysis of 1 ) and tetramethyloxirane ( 5 ) were noted at the higher temperatures]. Thermal decomposition of 3 produced only 4 and 5 . Kinetic studies were carried out by the chemiluminescence method. The rate of phosphorane was found to be first order with respect to each reagent. The activation parameters for the reaction of 1 and 2 were: Ea ? 9.8 ± 0.6 kcal/mole; ΔS = ?28 eu; k30° = 1.8 m?1sec?1 (range = 10–60°). Preliminary results for the reaction of 1 and tris (p-chlorophenyl)phosphine were: Ea ? 11 kcal/mole, ΔS = ?24 eu, k30° = 1.3 M?1sec?1 while those for the reaction of 1 and tris(p-anisyl)phosphine were: Ea ? 8.6 kcal/mole, ΔS = ?29 eu, k30° = 4.9 M?1 sec?1.  相似文献   

4.
The [2.2.2]hericene ( 6 ), a bicyclo[2.2.2]octane bearing three exocyclic s-cis-butadiene units has been prepared in eight steps from coumalic acid and maleic anhydride. The hexaene 6 adds successively three mol-equiv. of strong dienophiles such as ethylenetetracarbonitrile (TCE) and dimethyl acetylenedicarboxylate (DMAD) giving the corresponding monoadducts 17 and 20 (k1), bis-adducts 18 and 21 (k2) and tris-adducts 19 and 22 (k3), respectively. The rate constant ratio k1/k2 is small as in the case of the cycloadditions of 2,3,5,6-tetramethylidene-bicyclo [2.2.2]octane ( 3 ) giving the corresponding monoadducts 23 and 27 (k1) and bis-adducts 25 and 29 (k2) with TCE and DMAD, respectively. Constrastingly, the rate constant ratio k2/k3 is relatively large as the rate constant ratio k1/k2 of the Diels-Alder additions for 5,6,7,8-tetramethylidenebicyclo [2.2.2]oct-2-ene ( 4 ) giving the corresponding monoadducts 24 and 28 (k1) and bis-adducts 26 and 30 (k2). The following second-order rate constants (toluene, 25°) and activation parameters were obtained for the TCE additions: 3 +TCE→ 23 : k1 = 0.591±0.012 mol?1·l·s?1, ΔH=10.6±0.4 kcal/mol, and ΔS = ?24.0±1.4 cal/mol·K (e.u.); 23 +TCE→ 25 : k2=0.034±0.0010 mol?1·l·s?1, ΔH = 10.6±0.6 kcal/mol, and ΔS = ?29.7±2.0 e.u.; 4 +TCE→ 26 : k1 = 0.172±0.035 mol?1·l·s?1, ΔH 11.3±0.8 kcal/mol, and ΔS = ?24.0±2.8 e.u.; 24 +TCE→ 26 : k2 = (6.1±0.2)·10?4 mol?1·l·s?1, ΔH = 13.0±0.3 kcal/mol, and ΔS = ?29.5±0.8 e.u.; 6 +TCE→ 17 : k1 = 0.136±0.002 mol?1·l·s?1, ΔH = 11.3±0.2 kcal/mol, and ΔS = ?24.5±0.8 e.u.; 17 +TCE→ 18 : k2 = 0.0156±0.0003 mol?1·l·s?1, ΔH = 10.9±0.5 kcal/mol, and ΔS = ?30.1 ± 1.5 e.u.; 18 +TCE→ 19 : k3=(5±0.2) · 10?5 mol?1 mol?1 ·l·s?1, ΔH = 15±3 kcal/mol, and ΔS = ?28 ± 8 e.u. The following rate constants were evaluated for the DMAD additions (CD2Cl2, 30°): 6 +DMAD→ 20 : k1 = (10±1)·10?4 mol?1 · l·s?1; 20 +DMAD→ 21 : k2 = (6.5±0.1) · 10?4 mol?1 ·l·?1; 21 +DMAD→ 22 : k3 = (1.0±0.1) · 10?4 mol?1 ·l·s?1. The reactions giving the barrelene derivatives 19, 22, 26 and 30 are slower than those leading to adducts that are not barrelenes. The former are estimated less exothermic than the latter. It is proposed that the Diels-Alder reactivity of exocyclic s-cis-butadienes grafted onto bicycle [2.2.1]heptanes and bicyclo [2.2.2]octanes that are modified by remote substitution of the bicyclic skeletons can be affected by changes inthe exothermicity of the cycloadditions, in agreement with the Dimroth and Bell-Evans-Polanyi principle. Force-field calculations (MMPI 1) of 3, 4, 6 and related exocyclic s-cis-butadienes as a moiety of bicyclo [2.2.2]octane suggested single minimum energy hypersurfaces for these systems (eclipsed conformations, planar dienes). Their flexibility decreases with the degree of unsaturation of the bicyclic skeleton. The effect of an endocyclic double bond is larger than that of an exocyclic diene moiety.  相似文献   

5.
Pd-catalyzed double carbomethoxylation of the Diels-Alder adduct of cyclo-pentadiene and maleic anhydride yielded the methyl norbornane-2,3-endo-5, 6-exo-tetracarboxylate ( 4 ) which was transformed in three steps into 2,3,5,6-tetramethyl-idenenorbornane ( 1 ). The cycloaddition of tetracyanoethylene (TCNE) to 1 giving the corresponding monoadduct 7 was 364 times faster (toluene, 25°) than the addition of TCNE to 7 yielding the bis-adduct 9 . Similar reactivity trends were observed for the additions of TCNE to the less reactive 2,3,5,6-tetramethylidene-7-oxanorbornane ( 2 ). The following second order rate constants (toluene, 25°) and activation parameters were obtained for: 1 + TCNE → 7 : k1 = (255 + 5) 10?4 mol?1 · s?1, ΔH≠ = (12.2 ± 0.5) kcal/mol, ΔS≠ = (?24.8 ± 1.6) eu.; 7 + TCNE → 9 , k2 = (0.7 ± 0.02) 10?4 mol?1 · s?1, ΔH≠ = (14.1 ± 1.0) kcal/mol, ΔS≠ = ( ?30 ± 3.5) eu.; 2 + TCNE → 8 : k1 = (1.5 ± 0.03) 10?4 mol?1 · s?1, ΔH≠ = (14.8 ± 0.7) kcal/mol, ΔS≠ = (?26.4 ± 2.3) eu.; 8 + TCNE → 10 ; k2 = (0.004 ± 0.0002) 10?4 mol?1 · s?1, ΔH≠ = (17 ± 1.5) kcal/mol, ΔS≠ = (?30 ± 4) eu. The possible origins of the relatively large rate ratios k1/k2 are discussed briefly.  相似文献   

6.
3‐Methyl‐3‐(3‐pentyl)‐1,2‐dioxetane 1 and 3‐methyl‐3‐(2,2‐dimethyl‐1‐propyl)‐1,2‐dioxetane 2 were synthesized in low yield by the α‐bromohydroperoxide method. The activation parameters were determined by the chemiluminescence method (for 1 ΔH‡ = 25.0 ± 0.3 kcal/mol, ΔS‡ = −1.0 entropy unit (e.u.), ΔG‡ = 25.3 kcal/mol, k1 (60°C) = 4.6 × 10−4s−1; for 2 ΔH‡ = 24.2 ± 0.2 kcal/mol, ΔS‡ = −2.0 e.u., ΔG‡ = 24.9 kcal/mol, k1 (60°C) = 9.2 × 10−4s−1. Thermolysis of 1–2 produced excited carbonyl fragments (direct production of high yields of triplets relative to excited singlets) (chemiexcitation yields for 1: ϕT = 0.02, ϕ ≤ 0.0005; for 2: ϕT = 0.02, ϕS ≤ 0.0004). The results are discussed in relation to a diradical‐like mechanism. © 2001 John Wiley & Sons, Inc. Heteroatom Chem 12:459–462, 2001  相似文献   

7.
It has been confirmed by 1H and 13C NMR spectroscopies that Sn(σ-C7H7)Ph3 undergoes either 1,4- or 1,5-shifts of the SnPh3 moiety around the cycloheptatrienyl ring with ΔH3 = 13.8 ± 0.4 kcal mol?1, ΔS3 = ?5.6 ± 1.2 cal mol?1 deg?1, and ΔG3300 = 15.44 ± 0.14 kcal mol?1. Similarly, (σ-5-cyclohepta-1,3-dienyl)triphenyltin undergoes 1,5-shifts with ΔH3 = 12.4 ± 0.6 kcal mol?1, ΔS3 = ?11.2 ± 1.8 cal mol?1 deg?1, and ΔG3300 = 15.76 ± 0.13 kcal mol?1. It is therefore probable that Sn(σ-5-C5H5)R3 and Sn(σ-3-indenyl)R3 do not undergo 1,2-shifts as previously suggested but really undergo 1,5-shifts.  相似文献   

8.
Cyclohexane and piperidine ring reversal in 1-(3-pentyloxyphenylcarbamoyloxy)-2-dialkylaminocyclohexanes was investigated by 13C NMR. An unusually low conformational energy ΔG = 0.59 kJ mol?1 and activation parameters ΔG218 = 43.8 ± 0.4 kJ mol?1, ΔH = 48.9 ± 2.5 kJ mol?1 and ΔS = 23 ± 9 J mol?1 K?1 were found for the diequatorial to diaxial transition of the cyclohexane ring in the trans-pyrrolidinyl derivative. In the trans-piperidinyl derivative, ΔG222 = 44.7 ± 0.5 KJ mol?1, ΔH = 55.7 ± 6.3 kJ mol?1 and ΔS = 51 ± 21 J mol?1 K?1 was found for the piperidine ring reversal from the non-equivalence of the α-carbons.  相似文献   

9.
pK values of N,N-dihydroxyethylglycine (bicine) and N-[tris(hydroxymethyl)methyl]-glycine (tricine) have been determined by the Irving-Rossotti method in an aqueous medium at 25, 30, 35, 40, 45, and 50°C and at different ionic strengths (I = 0.1, 0.5, and 1.0). Plots between pKa(NH) and 1/T for various ionic strengths have been obtained and the values of slopes have been used to calculate the ΔH, ΔS, and ΔG for the dissociation reactions of bicine and tricine. The ΔH, ΔS, and ΔG values for bicine were found to be 10.6 ± 0.6 kcal mol?1, ?1.9 ± 1.8 e.u., and 11.1 ± 0.06 kcal mol?1, respectively, and for tricine 11.2 ± 0.6 kcal mol?1, 1.6 ± 1.6 e.u., and 10.7 ± 0.06 kcal mol?1, respectively. The pKa(NH) values decrease with rise in temperature but the influence of ionic strength is not significant.  相似文献   

10.
A series of pentasubstituted 3-hydroxy-1,2-dioxolanes, la-e , was synthesized by oxygen trapping of β-keto radicals formed during α-azo hydroperoxide decomposition. Thermolysis of the pentasubstituted 3-hydroxy-1,2-dioxolanes (hemiperketals) in benzene proceeded cleanly and yielded pairs of ketones and carboxylic acids. Two of the hemiperketals yielded only one pair of products while the others produced two sets of products. One of each pair of fragmentation products had undergone skeletal rearrangement. Only methyl migrations were observed when in competition with phenyl groups from the same position. The activation parameter data for ld [ΔH? = 24.3 kcal/mol, ΔS? = -8.4 eu, ΔG? = 27.1 kcal/mol, k60°. = 3.1 × 10?5 s?1] were consistent with 0.0 bond scission as the rate-determining-step. A likely mechanism for this thermolysis is initial peroxy bond homolysis to the 1,5-oxygen diradical followed by β-scissions with rearrangements.  相似文献   

11.
At room temperature and below, the proton NMR spectrum of N-(trideuteriomethyl)-2-cyanoaziridine consists of two superimposed ABC patterns assignable to two N-invertomers; a single time-averaged ABC pattern is observed at 158.9°C. The static parameters extracted from the spectra in the temperature range from –40.3 to 23.2°C and from the high-temperature spectrum permit the calculation of the thermodynamic quantities ΔH0 = ?475±20 cal mol?1 (?1.987 ± 0.084 kJ mol?1) and ΔS0 = 0.43±0.08 cal mol?1 K?1 (1.80±0.33 J mol?1 K?1) for the cis ? trans equilibrium. Bandshape analysis of the spectra broadened by non-mutual three-spin exchange in the temperature range from 39.4–137.8°C yields the activation parameters ΔHtc = 17.52±0.18 kcal mol?1 (73.30±0.75 kJ mol?1), ΔStc = ?2.08±0.50 cal mol?1 K?1 (?8.70±2.09 J mol?1 K?1) and ΔGtc (300 K) = 18.14±0.03 kcal mol?1 (75.90±0.13 kJ mol?1) for the transcis isomerization. An attempt is made to rationalize the observed entropy data in terms of the principles of statistical thermodynamics.  相似文献   

12.
The polymerization of acrylonitrile (AN) initiated by 1,4-dimethyl-1,4-bis(p-nitrophenyl)-2-tetrazene (Ie) was studied in dimethylformamide (DMF) at high temperature. The polymerization proceeds by a radical mechanism. The rate of polymerization is proportional to [Ie]0.64 and [AN]1.36. The overall activation energy for the polymerization is 21.5 kcal/mole within the temperature range of 115-130°C. The chain transfer of Ie was also undertaken over the temperature range of 120-135°C. The activation parameters for the decomposition of Ie at 120°C are kd = 2.78 × 10?6 sec?1, ΔH? = 40.8 kcal/mole, and ΔS? = 19.5 cal/mole-deg, respectively.  相似文献   

13.
Azoethane was irradiated in the presence of carbon monoxide in the temperature range of 238 to 378 K. Kinetic parameters for the addition of ethyl radicals to carbon monoxide and for the decomposition of propionyl radicals were determined. The rate constants were found to be log k(cm3 mol?1 sec?1) = 11.19 - 4.8/θ and log k(sec?1) = 12.77 - 14.4/θ, respectively. Estimated thermochemical properties of the propionyl radical are ΔHf0 = -10.6 ± 1.0 kcal mol?1, S0 = 77.3 ± 1.0 cal K?1 mol?1, and D(C2H5CO? H) = 87.4 kcal mol?1.  相似文献   

14.
This paper estimates some thermochemical (in kcal mol–1) and detonation parameters for the ionic liquid, [emim][ClO4] and its associated solid in view of its investigation as an energetic material. The thermochemical values estimated, employing CBS‐4M computational methodology and volume‐based thermodynamics (VBT) include: lattice energy, UPOT([emim][ClO4]) ≈? 123 ± 16 kcal · mol–1; enthalpy of formation of the gaseous cation, ΔfH°([emim]+, g) = 144.2 kcal · mol–1 and anion, ΔfH°([ClO4], g) = –66.1 kcal · mol–1; the enthalpy of formation of the solid salt, ΔfH°([emim][ClO4],s) ≈? –55 ± 16 kcal · mol–1 and for the associated ionic liquid, ΔfHo([emim][ClO4],l) = –52 ± 16 kcal · mol–1 as well as the corresponding Gibbs energy terms: ΔfG°([emim][ClO4],s) ≈? +29 ± 16 kcal · mol–1 and ΔfGo([emim][ClO4],l) = +24 ± 16 kcal · mol–1 and the associated standard absolute entropies, of the solid [emim][ClO4], S°298([emim][ClO4],s) = 83 ± 4 cal · K–1 · mol–1. The following combustion and detonation parameters are assigned to [emim][ClO4] in its (ionic) liquid form: specific impulse (Isp) = 228 s (monopropellant), detonation velocity (VoD) = 5466 m · s–1, detonation pressure (pC–J) = 99 kbar, explosion temperature (Tex) = 2842 K.  相似文献   

15.
The stability constants (for the formation) of LaBr2+ and LaBr2+ ions were obtained potentiometrically at various ionic strengths at 20°, 25°, 30°, and 35°. The molal free energy was given by ΔG°=-2,444.04+2.67T log T+1.39T. The thermodynamic quantities for the formation of LaBr2+ were evaluated as ΔHf° = ?207.9, ΔGf° = ?199.1 kcal mole?1 and S° = ?29.5 cal. deg?1 mole?1 at 25°.  相似文献   

16.
The initiation reaction of the polymerization of α-methylstyrene by trityl tetrachloroferate and tritylhexachloroantimonate in 1,2-dichloroethane at 20°C was studied. The rate constants were 14 × 10?3 and 27 × 10?3 L mol?1s?1, respectively. The dissociation constants of tritylterachloroferate (Kd = 0.88 × 10?4M?1) and tritylhexachloroantimonate (Kd = 2.64 × 10?4M?1) was determined. The effect of electron acceptors and donors on the dissociation equilibrium and initiation rate was investigated. It was shown that in strongly dissociated ion pairs such as stable carbenium salts the electron donors and acceptors have no appreciable effect on the magnitude of the dissociation. The temperature dependence of the rate constants in the ?20–+20°C range yielded the following thermodynamic parameters for trityltetrachloroferate: Ei = 8.54 kcal/mol; A = 3.2 × 104 mol?1s?1; ΔH* = 8 kcal/mol; and S* = ?39.8 eu.  相似文献   

17.
The kinetics of the interactions between three sulfur‐containing ligands, thioglycolic acid, 2‐thiouracil, glutathione, and the title complex, have been studied spectrophotometrically in aqueous medium as a function of the concentrations of the ligands, temperature, and pH at constant ionic strength. The reactions follow a two‐step process in which the first step is ligand‐dependent and the second step is ligand‐independent chelation. Rate constants (k1 ~10?3 s?1 and k2 ~10?5 s?1) and activation parameters (for thioglycolic acid: ΔH1 = 22.4 ± 3.0 kJ mol?1, ΔS1 = ?220 ± 11 J K?1 mol?1, ΔH2 = 38.5 ± 1.3 kJ mol?1, ΔS2 = ?204 ± 4 J K?1 mol?1; for 2‐thiouracil: ΔH1 = 42.2 ± 2.0 kJ mol?1, ΔS1 = ?169 ± 6 J K?1 mol?1, ΔH2 = 66.1 ± 0.5 kJ mol?1, ΔS2 = ?124 ± 2 J K?1 mol?1; for glutathione: ΔH1 = 47.2 ± 1.7 kJ mol?1, ΔS1 = ?155 ± 5 J K?1mol?1, ΔH2 = 73.5 ± 1.1 kJ mol?1, ΔS2 = ?105 ± 3 J K?1 mol?1) were calculated. Based on the kinetic and activation parameters, an associative interchange mechanism is proposed for the interaction processes. The products of the reactions have been characterized from IR and ESI mass spectroscopic analysis. A rate law involving the outer sphere association complex formation has been established as   相似文献   

18.
A temperature dependence study of the ultrasonic amplitudes, velocities, and relaxation times for a presumed conformational transition of noncomplexed aqueous 18-crown-6 (1,4,7,10,13,16-hexaoxacyclooctadecane) is discussed. At all temperatures a single relaxation was observed within a 15–255-MHz frequency range. The equilibrium constant for the presumed conformational transition \documentclass{article}\pagestyle{empty}\begin{document}$ {\rm CR}_1 \mathop \rightleftarrows\limits^{K_{12} } {\rm CR}_2 $\end{document} was determined to be K21 = (2 ± 2) × 10?2. The activation parameters are ΔH21 = 10.2 ± 1.0 kcal/mol, ΔS21 = 7.7 ± 0.2 cal/(mol·deg), ΔH12 = 7.4 ± 1.0 kcal/mol, and ΔS12 = 7.7 ± 0.2 cal/(mol·deg), while the thermodynamic enthalpy and entropy were found to be ?2.6 ± 1.0 kcal/mol and 0 ± 0.2 cal/(mol·deg), respectively. The rate constants at 25.0°C for the presumed conformational transition are k21 = (1.0 ± 0.3) × 107 sec?1 and k12 = (6.2 ± 0.2) × 108 sec?1.  相似文献   

19.
Kinetic activation parameters and thermodynamic functions describing the reversible anionic polymerization of 2-methoxy-2-oxo-1,3,2-dioxaphosphorinane (1,3-propylene methyl phosphate) were determined. Enthalpy and entropy of the anionic propagation ? depropagation equilibrium were found to be close to those found previously by the present authors for the cationic polymerization, while the activation parameters of propagation and depropagation differ substantially for both processes and reflect the differences in the involved mechanisms. Thus, data for anionic polymerization (and cationic polymerization in parentheses) are: ΔH1s° = ?0.7 kcal/mole (?1.1); ΔS1s° = ?2.8 cal/mole-deg (?5.4); ΔHp? = 26.7 kcal/mole, and ΔSp? = ?6.1 cal/mole-deg. The polymers obtained have low degrees of polymerization (DP n ≤ 10) because of the extensive chain transfer, leaving cyclic end groups in macromolecules. The presence, structure and concentration of the end groups have been determined by 1H-, 31P-, and 13C-NMR spectra.  相似文献   

20.
The Arrhenius parameters for the title reaction have been measured in a very-low-pressure pyrolysis apparatus in the temperature range 644–722 K and are given by log k2 (M?1 · sec?1) = 9.68 - 2.12/θ, where θ = 2.303RT in kcal/mol. Together with the published Arrhenius parameters for the reverse reaction from iodination studies, they result in a standard heat of formation of the t-butyl radical of 8.4 kcal/mol, accepting S0(C4H9·) = 72.2 e.u. at 300 K from other kinetic data, and thus confirm the accepted value for ΔHf0(t-C4H9·), at variance with recent investigations which yielded significantly higher values. This value for ΔHf0(t-C4H9·) results in a bond-dissociation energy (BDE) for isobutane of 92.7 kcal/mol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号