首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We prepared blends of poly(butylene‐2,6‐naphthalate) (PBN) and poly(ether imide) (PEI) by solution‐casting from dichloroacetic acid solutions. The miscibility, crystallization, and melting behavior of the blends were investigated with differential scanning calorimetry (DSC) and dynamic mechanical analysis. PBN was miscible with PEI over the entire range of compositions, as shown by the existence of single composition‐dependent glass‐transition temperatures. In addition, a negative polymer–polymer interaction parameter was calculated, with the Nishi–Wang equation, based on the melting depression of PBN. In nonisothermal crystallization investigations, the depression of the crystallization temperature of PBN depended on the composition of the blend and the cooling rate; the presence of PEI reduced the number of PBN segments migrating to the crystallite/melt interface. Melting, recrystallization, and remelting processes occurring during the DSC heating scan caused the occurrence of multiple melting endotherms for PBN. We explored the effects of various experimental conditions on the melting behavior of PBN/PEI blends. The extent of recrystallization of the PBN component during DSC heating scans decreased as the PEI content, the heating rate, the crystallization temperature, and the crystallization time increased. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1694–1704, 2004  相似文献   

2.
The multiple melting behavior of poly(1,3-propylene terephthalate) (PPT) samples after isothermal crystallization from the melt was studied. The step-scan temperature-modulated differential scanning calorimetry (TMDSC) and high rate DSC were used to investigate this behavior in conjunction with standard DSC, wide-angle X-ray diffraction (WAXD) and polarizing light microscopy (PLM). The effect of PPT average molecular weight on the melting was also examined. In general multiple endotherms after isothermal crystallization of PPT were attributed to a continuous crystal perfection process during the subsequent heating scan via melting-recrystallization-remelting. Multiple melting behavior was more pronounced for the low molecular weight PPT. Step-scan TMDSC showed that extensive recrystallization occurs in PPT samples, especially after rapid isothermal crystallization. In fact two recrystallization exothermic peaks were observed. High rate DSC revealed the initial morphology generated during the isothermal step and showed that the low and middle peaks are associated with melting of primary crystals while the high temperature peak should be attributed to melting of recrystallized material.  相似文献   

3.
The melting behavior of poly(butylene terephthalate) crystallized isothermally for various times was examined using differential scanning calorimetry. After short crystallization times, the DSC analysis gave two melting peaks, but after longer times, the analysis gave three peaks. The latter triplet of DSC peaks can be denoted as low, middle, and high, starting with the lowest temperature endotherm. The DSC peaks were simulated using a measured recrystallization rate and behavior for PBT and an assumed initial melting point distribution. The low and middle peaks represent the original melting peaks arising from isothermal crystallization. The high melting peak arises from recrystallization during the DSC heating scan. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1757–1767, 1998  相似文献   

4.
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials.However,for polymeric lamellar crystals,the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms,which may result from changes of metastability via recrystallization process.Sometimes,the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm.In this work,we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals.With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior.The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature.For instance,PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon.High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior.Furthermore,the melting endotherms were fitted via the melting kinetics equations.The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range,which is attributed to the different degrees of stabilization.Finally,the mechanism of melting-recrystallization is briefly discussed.We propose that apparent meltrecrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

5.
The double melting behavior of poly(butylene terephthalate) (PBT) was studied with differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. DSC melting curves of melt‐crystallized PBT samples, which we prepared by cooling from the melt (250 °C) at various cooling rates, showed two endothermic peaks and an exothermic peak located between these melting peaks. The cooling rate effect on these peaks was investigated. The melt‐crystallized PBT sample cooled at 24 K min?1 was heated at a rate of 1 K min?1, and its diffraction patterns were obtained successively at a rate of one pattern per minute with an X‐ray measurement system equipped with a position‐sensitive proportional counter. The diffraction pattern did not change in the melting process, except for the change in its peak height. This suggests that the double melting behavior does not originate from a change in the crystal structure. The temperature dependence of the diffraction intensity was obtained from the diffraction patterns. With increasing temperature, the intensity decreased gradually in the low‐temperature region and then increased distinctly before a steep decrease due to the final melting. In other words, the temperature‐dependence curve of the diffraction intensity showed a peak that is interpreted as proof of the recrystallization in the melting process. The peak temperature was 216 °C. The temperature‐dependence curve of the enthalpy change obtained by the integration of the DSC curve almost coincided with that of the diffraction intensity. The double melting behavior in the heating process of PBT is concluded to originate from the increase of crystallinity, that is, recrystallization. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2005–2015, 2001  相似文献   

6.
The multiple melting behavior of poly(ethylene terephthalate) (PET) was investigated with differential scanning calorimetry (DSC) by examining PET samples having been subjected to special schemes of crystallization and annealing treatment at multiple descending temperatures. Upon such step-wise annealing in decreasing temperatures, the existence of doublet melting peaks in addition to a series of multiple minor peaks in the PET has been demonstrated using carefully designed thermal schemes. Using the Hoffman theory, multiple lamellae populations, might be suggested to be simultaneously present in the PET subjected to such thermal treatments. However, direct experimental evidence has yet to be provided. The low-temperature minor crystals simply melt during normal scanning without having time enough to reorganize into higher-melt crystals. Nevertheless, the effect of scanning on non-isothermal crystallization does exist but is primarily confined to the temperature range much below the main melting region where the crystallization of polymer chains can progress at a reasonable rate. At higher temperatures near the main melting region, annealing for extended times is required in order to result in relative changes of the melting endotherms of the upper and lower peaks in the main melting doublet. In all we have shown that interpretations of the multiple melting phenomenon in semicrystalline polymers can be better refined.  相似文献   

7.
The complex thermal behavior of poly(l ‐lactic acid) films crystallized from the melt, either isothermally or nonisothermally, was studied by differential scanning calorimetry (DSC), wide angle X‐ray diffraction, and small angle X‐ray scattering. The variation of the thermal behavior with crystallization temperature, time, and cooling rate was documented and analyzed. After nonisothermal crystallization at low cooling rates that develop high crystallinity, an obvious double melting peak appears at modest heating rates (e.g., 10 °C/min). At higher heating rates, these samples exhibit only single melting. However, an unusual form of double melting occurs under the majority of the conditions studied under either isothermal or nonisothermal conditions. In this case, double melting is marked by the appearance of a recrystallization exotherm just prior to the final melting that obscures the observation of the melting of the crystals formed during the initial crystallization process. The occurrence of double melting in melt‐crystallized samples was concluded to be the result of a melt‐recrystallization process occurring during the subsequent DSC heating scan; it is a function of crystalline perfection, not the initial crystallinity, nor whether or not the crystallization reached completion at the crystallization temperature. Many other very interesting observations are also discussed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3378–3391, 2006  相似文献   

8.
The melting behavior of poly(L ‐lactic acid) film crystallized from the glassy state, either isothermally or nonisothermally, was studied by wide angle X‐ray diffraction (WAXD), small angle X‐ray scattering (SAXS), differential scanning calorimetry (DSC), and temperature‐modulated differential scanning calorimetry (TMDSC). Up to three crystallization and two melting peaks were observed. It was concluded that these effects could largely be accounted for on the basis of a “melt‐recrystallization” mechanism. When molecular weight is low, two melting endotherms are readily observed. But, without TMDSC, the double melting phenomena of high molecular weight PLLA is often masked by an exotherm just prior to the final melting, as metastable crystals undergo melt‐recrystallization during heating in the DSC. The appearance of a double cold‐crystallization peak during the DSC heating scan of amorphous PLLA film is the net effect of cold crystallization and melt‐recrystallization of metastable crystals formed during the initial cold crystallization. Samples cold‐crystallized at 80 and 90 °C did not exhibit a long period, although substantial crystallinity developed. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3200–3214, 2006  相似文献   

9.
This article investigated the melting behaviors, crystallization kinetics, and spherulitic morphologies of poly(butylene succinate) (PBS) and its copolyester (PBSR) modified with rosin maleopimaric acid anhydride, using wide‐angle X‐ray diffraction, differential scanning calorimeter (DSC), and polarized optical microscope. Subsequent DSC scans of isothermally crystallized PBS and PBSR exhibited two melting endotherms, respectively, which was due to the melt‐recrystallization process occurring during the DSC scans. The equilibrium melting point of PBSR (125.9 °C) was lower than that of PBS (139 °C). The commonly used Avrami equation was used to describe the isothermal crystallization kinetics. For nonisothermal crystallization studies, the model combining Avrami equation and Ozawa equation was employed. The result showed a consistent trend in the crystallization process. The crystallization rate was decreased, the perfection of crystals was decreased, the recrystallization was reduced, and the spherulitic morphologies were changed when the huge hydrogenated phenanthrene ring was added into the chain of PBS. The activation energy (ΔE) for the isothermal crystallization process determined by Arrhenius method was 255.9 kJ/mol for PBS and 345.7 kJ/mol for PBSR. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 900–913, 2006  相似文献   

10.
The polymerization of a cyclic butylene terephthalate (CBT) oligomer was studied as a function of temperature (T=200 and 260°C, respectively) by modulated DSC (MDSC). The first heating was followed by cooling after various holding times (5, 15 and 30 min) prior to the second heating which ended always at T=260°C. This allowed us to study the crystallization and melting behavior of the resulting polybutylene terephthalate (PBT), as well. In contrary to the usual belief, the CBT polymerization is exothermic and the related process is superimposed to that of the CBT melting. The melting behavior of the PBT was affected by the polymerization mode (performed below or above the melting temperature of the PBT product) of the CBT. Annealing above the melting temperature of PBT yielded a product featuring double melting. This was attributed to the presence of crystallites with different degrees of perfection. The crystals perfection which occurred via recrystallization/remelting was manifested by a pronounced exothermic peak in the non-reversing trace.  相似文献   

11.
A method is described for measuring the heat and rate of recrystallization following partial melting. The method uses a specific sequence of temperatures with a differential scanning calorimeter, and the melting and recrystallization processes were confirmed by optical observations. The method was applied to poly(butylene terephthalate). The rate of recrystallization was found to be roughly two orders of magnitude faster than isothermal crystallization from the melt. The melting temperatures obtained from recrystallization were used in the Hoffman–Weeks equation to deduce 236°C as the equilibrium melting temperature for poly(butylene terephthalate). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36 : 133–141, 1998  相似文献   

12.
Morphology development during isothermal annealing of poly(ether-ester) multiblock copolymers with hard segments containing poly(tetramethylene isophthalate) is examined by differential scanning calorimetry (DSC) and small-angle x-ray scattering (SAXS). Reorganization in the solid-state occurs by melting and recrystallization. At temperatures close to the melting point, glass transition measurements after quenching from the annealing temperature suggest microphase mixing follows melting. The temperature of maximum recrystallization rate is elevated relative to that of isothermal crystallization. SAXS experiments suggest that a memory of the initial morphology is retained during annealing. Aspects of the DSC scans related to crystallization on cooling and rescanning also suggest that the morphology at the annealing temperature plays a governing role in the determination of the degree of order possible on cooling. The crystalline regions stable at the annealing temperature are envisioned to function in a dual role, acting as nucleation centers for recrystallization and as a form of “constraint” to ordering on cooling. © 1996 John Wiley & Sons, Inc.  相似文献   

13.
Polymorphic crystals and complex multiple melting behavior in an aliphatic biodegradable polyester, poly(butylene adipate) (PBA), were thoroughly examined by wide‐angle X‐ray diffraction (WAXD) and differential scanning calorimetry (DSC). Further clarification on mechanisms of multiple melting peaks related to polymorphic crystal forms in PBA was attempted. More stable α‐form crystal is normally favored for crystallization from melt at higher temperatures (31–35 °C), or upon slow cooling from the melt; while the β‐form is the favored species for crystallization at low temperatures (25–28 °C). We further proved that PBA crystallization could also result in all α‐form even at low temperatures (25–28 °C) if it crystallized with the presence of prior α‐form nuclei. PBA packed with both crystal forms could display as many as four melting peaks (P1 ? P4, in ascending temperature order). However, PBA initially containing only the α‐crystal exhibited dual melting peaks of P1 and P3, which are attributed to dual lamellar distributions of the α‐crystal. By contrast, PBA initially containing only the β‐crystal could also exhibit dual melting peaks (P2 and P4) upon scanning. While P2 is clearly associated with melting of the initial β‐crystal, the fourth melting peak (P4), appearing rather broad, was determined to be associated with superimposed thermal events of crystal transformation from β‐ to α‐crystal and final re‐melting of the new re‐organized α‐crystal. Crystal transformation from one to the other or vice versa, lamellae thickening, annealing at molten state, and influence on crystal polymorphism in PBA were analyzed. Relationships and mechanisms of dual peaks for isolate α‐ or β‐crystals in PBA are discussed. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1662–1672, 2005  相似文献   

14.
The differential scanning calorimetry (DSC) melting curves of drawn nylon 6 were studied from the standpoint of reorganization of the crystals during the heating process. A new method was presented to obtain the DSC curve associated with the growth and melting of the original crystals, and that with the recrystallization and final melting process, separately. The results obtained show that, in the case of a heating rate of 10°C/min, the original crystals in the sample start perfecting themselves at temperatures far below their initial melting temperature and melt out below 222°C, recrystallization starts at about 210°C, and the newly emerged crystals melt out at 228°C. The superposition of two such constructed DSC curves reproduces the observed DSC curve well. Therefore, the double melting peaks of the sample are considered to be the result of superposition of three processes which occur successively during heating; perfection of the original crystals, melting of the perfected crystals concurrently with recrystallization, and melting of the recrystallized crystals.  相似文献   

15.
徐军 《高分子科学》2017,35(12):1552-1560
Differential scanning calorimetry (DSC) has been widely applied to study crystallization and melting of materials. However, for polymeric lamellar crystals, the melting thermogram during heating process usually exhibits a broad endothermic peak or even multiple endotherms, which may result from changes of metastability via recrystallization process. Sometimes, the recrystallization exotherm cannot be observed due to its overlapping with the melting endotherm. In this work, we employed a step heating procedure consisting of successive heating and temperature holding stages to measure the metastability of isothermally crystallized poly(butylene succinate) (PBS) crystals. With this approach we could gain the fraction of crystals melted at different temperature ranges and quantitatively detect the melting-recrystallization behavior. The melting-recrystallization behavior depends on the polymer chain structure and the crystallization temperature. For instance, PBS block copolymer hardly shows recrystallization behavior while PBS oligomer and high molecular weight PBS homopolymer demonstrate remarkable melting-recrystallization phenomenon. High molecular weight PBS isothermally crystallized in the low temperature range shows multiple melting-recrystallization while those isothermally crystallized at elevated temperatures do not exhibit observable recrystallization behavior. Furthermore, the melting endotherms were fitted via the melting kinetics equations. The original isothermally crystallized lamellae demonstrate quite different melting kinetics from the recrystallized lamellar crystals that melt at the highest temperature range, which is attributed to the different degrees of stabilization. Finally, the mechanism of melting-recrystallization is briefly discussed. We propose that apparent melt-recrystallization phenomenon be observed when melting of preformed lamellar crystals and recrystallization of thicker lamellae have similar free energy barrier.  相似文献   

16.
The melting behavior of isothermally crystallized poly(butylene succinate) (PBS) has been investigated using differential scanning calorimetry (DSC) and wide‐angle X‐ray analysis. The samples crystallized between 80°C to 100°C show middle endotherm at the position just before the high exotherm, while the others under 80°C show two endotherms (low and high). From the results of the melting peak vs. crystallization temperature plot, it was suggested that the middle endotherm corresponds to the melting process of the original crystallites and the high endotherms to the melting process of the recrystallized ones. As the DSC heating rate was increased, the peak temperature of the low and middle endotherms increased and that of the high endotherm decreased, indicating that the low endotherm was due to the original crystallites as well as the middle endotherm. Consequently, in the heating scan of PBS, the existence of two kinds of morphologically different crystallites as well as the process of melting and recrystallization becomes evident. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 1357–1366, 1999  相似文献   

17.
Poly(butylene terephthalate) (PBT) was blended with nanoscale fully vulcanized acrylic rubber (FVAR) powders in a twin extruder, and the FVAR powders were dispersed well in PBT from scanning electron microscopy (SEM) and transmission electron microscope (TEM) investigation. The isothermal crystallization kinetics of PBT/FVAR blends were investigated by differential scanning calorimeter (DSC) and simulated by Avrami model. Equilibrium melting temperature was estimated by the nonlinear Hoffman-Weeks relation. The active energy (ΔE) and nucleation parameters (Kg) increased with the addition of FVAR, suggesting that FVAR particles hindered the crystallization; however more content FVAR had a lower ΔE and Kg because FVAR powders acted as heterogeneous nuclei in the nucleation of crystallization and facilitated the crystallization of PBT. The crystallization ability followed the order: PBT > PBT/FVAR6 > PBT/FVAR3 > PBT/FVAR1 when undercooling was considered.  相似文献   

18.
19.
The miscibility and the isothermal crystallization kinetics for PBT/Epoxy blends have been studied by using differential scanning calorimetry, and several kinetic analyses have been used to describe the crystallization process. The Avrami exponents n were obtained for PBT/Epoxy blends. An addition of small amount of epoxy resin (3%) leads to an increase in the number of effective nuclei, thus resulting in an increase in crystallization rate and a stronger trend of instantaneous three‐dimensional growth. For isothermal crystallization, crystallization parameter analysis showed that epoxy particles could act as effective nucleating agents, accelerating the crystallization of PBT component in the PBT/Epoxy blends. The Lauritzen–Hoffman equation for DSC isothermal crystallization data revealed that PBT/Epoxy 97/3 had lower nucleation constant Kg than 100/0, 93/7, and 90/10 PBT/Epoxy blends. Analysis of the crystallization data of PBT/Epoxy blends showed that crystallization occurs in regime II. The fold surface free energy, σe = 101.7–58.0 × 10?3 J/m2, and work of chain folding, q = 5.79–3.30 kcal/mol, were determined. The equilibrium melting point depressions of PBT/Epoxy blends were observed and the Flory–Huggins interaction parameters were obtained. It indicated that these blends were thermodynamically miscible in the melt. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1320–1330, 2006  相似文献   

20.
Nonisothermal crystallization and melting behavior of poly(β‐hydroxybutyrate) (PHB)–poly(vinyl acetate) (PVAc) blends from the melt were investigated by differential scanning calorimetry using various cooling rates. The results show that crystallization of PHB from the melt in the PHB–PVAc blends depends greatly upon cooling rates and blend compositions. For a given composition, the crystallization process begins at higher temperatures when slower scanning rates are used. At a given cooling rate, the presence of PVAc reduces the overall PHB crystallization rate. The Avrami analysis modified by Jeziorny and a new method were used to describe the nonisothermal crystallization process of PHB–PVAc blends very well. The double‐melting phenomenon is found to be caused by crystallization during heating in DSC. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 443–450, 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号