首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with a 1-alkyne HCCR (R =tBu, CO2Me, CO2Et, or C6H4Me-4), in the presence of Tl[BF4]/[NH4][BF4], under sunlight, affords the corresponding carbyne-fluoro complexes trans-[ReF(CCH2R)(dppe)2][BF4] in an unprecedented single-pot synthesis. Further reaction with [BU4N]OH leads to the vinylidenefluoro compounds trans-[ReF(=C=CHR)(dppe)2] (R = CO2Me, CO2Et, or C6H4Me-4).  相似文献   

2.
The isocyanide complexes trans-[ReCl(CNR)(dppe)2] (R  Me, But, C6H4CH3-4, C6H4CH3-2, C6H4Cl-4, C6H4OCH3-4 and C6H3Cl2-2,6; dppe  Ph2PCH2CH2PPh2) have been prepared by isocyanide displacement of dinitrogen from the parent complex trans-[ReCl(N2)(ddpe)2]. Their redox properties have been studied by cyclic voltammetry and are interpreted on the basis of the electronic properties and the geometry of the ligating isocyanides which are believed to be bent in these complexes, appearing to exhibit ligand parameter (PL) values ca. +0.3 V higher than those which would be expected for linear geometry. A very high polarisability (B ? 3.4) is observed for the {ReCl(dppe)2} site.  相似文献   

3.
The interaction of cis-[(Ph3PCH2)(Ph3P)PtCl2] with aluminium(III) chloride in CH2Cl2 affords the three coordinate cationic platinum(II) complex [(Ph3PCH2)(Ph3P)PtCl][AlCl4] which is a useful starting material for platinum complexes with four different ligands. With Ph3As and Me2S the cationic phosphorus ylide complexes [(Ph3PCH2)(Ph3P)(Ph3As)PtCl][AlCl4] and [(Ph3PCH2)(Ph3P)(Me2S)PtCl][AlCl4] are formed. 851 V 3  相似文献   

4.
Stable phosphoranes, Ar3P = CHCOR (R = C6H5, C6H4NO2, C6H4OCH3, CH3, OCH2C6H5; Ar = p‐tolyl or phenyl), have been C‐acylated by acetic anhydride to obtain new types of phosphorus ylides. Synthesis and characterization of six phosphorus ylides of the type Ar3PC(COCH3)(COR) are reported. The reaction of {(p‐tolyl)3PCHCOC6H5} ( I ), {(p‐ tolyl)3PCHCOC6H4NO2} ( II ), {Ph3PCHCOC6H4NO2} ( III ), {Ph3PCHCOC6H4OCH3} ( IV ), {(p‐tolyl)3PCHCOCH3} ( V ), and {Ph3PCHCOOCH2C6H5} ( VI ) with acetic anhydride in dry chloroform as solvent gives (p‐tolyl)3PC(COMe)(COC6H5), α‐acetyl‐α‐benzoylmethy‐lenetriphenylphosphorane ( 1 ), {(p‐tolyl)3PC(COMe) (COC6H4NO2)} ( 2 ), {Ph3PC(COMe)(COC6H4NO2)} ( 3 ), {Ph3PC(COMe)(COC6H4OCH3)} ( 4 ), {(p‐tolyl)3 PC(COCH3)2} ( 5 ), and {Ph3PC(COMe)(COOCH2 C6H5)} ( 6 ). Single crystal X‐ray analyses for ylides 2 , 5 , and 6 reveal the monoclinic ( 2, 5 ) and triclinic ( 6 ) crystal systems. Characterization of the obtained compounds was also performed by elemental analysis, IR, 1H, 31P, and 13C NMR. The geometries of these compounds have been investigated using density functional theory (DFT). In addition, electronic parameters of these compounds such as HOMO and LUMO energy, Mulliken partial charge, and dipole moment were obtained. In this paper, the reactivity of these ylides is discussed in regard to the aforementioned data. © 2010 Wiley Periodicals, Inc. Heteroatom Chem 21:475–485, 2010; View this article online at wileyonlinelibrary.com . DOI 10.1002/hc.20633  相似文献   

5.
Reactions of [Ru{C=C(H)-1,4-C6H4C≡CH}(PPh3)2Cp]BF4 ([ 1 a ]BF4) with hydrohalic acids, HX, results in the formation of [Ru{C≡C-1,4-C6H4-C(X)=CH2}(PPh3)2Cp] [X=Cl ( 2 a-Cl ), Br ( 2 a-Br )], arising from facile Markovnikov addition of halide anions to the putative quinoidal cumulene cation [Ru(=C=C=C6H4=C=CH2)(PPh3)2Cp]+. Similarly, [M{C=C(H)-1,4-C6H4-C≡CH}(LL)Cp ]BF4 [M(LL)Cp’=Ru(PPh3)2Cp ([ 1 a ]BF4); Ru(dppe)Cp* ([ 1 b ]BF4); Fe(dppe)Cp ([ 1 c ]BF4); Fe(dppe)Cp* ([ 1 d ]BF4)] react with H+/H2O to give the acyl-functionalised phenylacetylide complexes [M{C≡C-1,4-C6H4-C(=O)CH3}(LL)Cp’] ( 3 a – d ) after workup. The Markovnikov addition of the nucleophile to the remote alkyne in the cations [ 1 a–d ]+ is difficult to rationalise from the vinylidene form of the precursor and is much more satisfactorily explained from initial isomerisation to the quinoidal cumulene complexes [M(=C=C=C6H4=C=CH2)(LL)Cp’]+ prior to attack at the more exposed, remote quaternary carbon. Thus, whilst representative acetylide complexes [Ru(C≡C-1,4-C6H4-C≡CH)(PPh3)2Cp] ( 4 a ) and [Ru(C≡C-1,4-C6H4-C≡CH)(dppe)Cp*] ( 4 b ) reacted with the relatively small electrophiles [CN]+ and [C7H7]+ at the β-carbon to give the expected vinylidene complexes, the bulky trityl ([CPh3]+) electrophile reacted with [M(C≡C-1,4-C6H4-C≡CH)(LL)Cp’] [M(LL)Cp’=Ru(PPh3)2Cp ( 4 a ); Ru(dppe)Cp* ( 4 b ); Fe(dppe)Cp ( 4 c ); Fe(dppe)Cp* ( 4 d )] at the more exposed remote end of the carbon-rich ligand to give the putative quinoidal cumulene complexes [M{C=C=C6H4=C=C(H)CPh3}(LL)Cp’]+, which were isolated as the water adducts [M{C≡C-1,4-C6H4-C(=O)CH2CPh3}(LL)Cp’] ( 6 a–d ). Evincing the scope of the formation of such extended cumulenes from ethynyl-substituted arylvinylene precursors, the rather reactive half-sandwich (5-ethynyl-2-thienyl)vinylidene complexes [M{C=C(H)-2,5-cC4H2S-C≡CH}(LL)Cp’]BF4 ([ 7 a – d ]BF4 add water readily to give [M{C≡C-2,5-cC4H2S-C(=O)CH3}(LL)Cp’] ( 8 a – d )].  相似文献   

6.
Decarboxylation reactions between the complexes cis–[PtCl2L] (L = 1, n–bis(diphenylphosphino)–ethane (n = 2, dppe), –propane (n = 3, dppp) or –butane (n = 4, dppb)) and thallium(I) pentafluorobenzoate in pyridine give cis–[PtCl(C6F5)L] and cis–[Pt(C6F5)2L] complexes in high yields with short reaction times. X–ray crystal structures of cis–[PtCl(C6F5)(dppe)] · 0.5 C5H5N, cis–[PtCl(C6F5)(dppp)], cis–[PtCl(C6F5)(dppb)] · C3H6O, cis–[Pt(C6F5)2L] (L = dppe, dppp and dppb) and the reactants cis–[PtCl2(dppp)] (as a CH2Cl2 solvate) and cis–[PtCl2(dppb)] show monomeric structures with chelating diphosphine ligands in all cases rather than dimers with bridging diphosphines. 31P NMR data are consistent with these structures in solution.  相似文献   

7.
Treatment of the alkynylhydridocomplex [MoH3(CCtBu)(dppe)2](dppePh2PCH2CH2PPh2) with [Et2OH][BF4] gives trans-[MoF(CCH2tBu)(dppe)2], the first example of a stable paramagnetic alkylidyne complex, the X-ray structure of which is reported.  相似文献   

8.
Complexes of iron(III) with ethylene glycol and 3(2′-hydroxyphenyl)-5-(4′-substituted phenyl) pyrazolines, [Fe(OCH2CH2O)(C15H12N2OX)] m ? nH2O and [Fe(C15H12N2OX)2(OCH2CH2OH)] (where OCH2CH2O and OCH2CH2OH = ethylene glycol moiety; C15H12N2OX = 3(2′-hydroxyphenyl)-5-(4-X-phenyl)pyrazoline; X = H, CH3, OCH3, or Cl; m = 2–3 and n = 2–3) have been synthesized and characterized by elemental analysis (C, H, N, Cl, and Fe), molecular weight measurement, magnetic moment data, thermogravimetric analysis, molar conductance, spectral (UV-Vis, IR, and FAB mass), scanning electron microscopy, and X-ray diffraction studies. Bonding of ethylene glycol and pyrazolines in these complexes and the particle size of iron(III) complexes are discussed. Antibacterial and antifungal potential of free pyrazoline and some iron(III) complexes are also discussed.  相似文献   

9.
Abstract

Reaction of bidentate tertiary phosphines with excess [Co(CNR)5]BF4, or reaction of [Co(CNR)4L-L]BF4 with excess [Co(CNR)5]BF4, leads to bimetallic complexes of the form, [(RNC)4CoL-LCo(CNR)4](BF4)2, R = 2,6-Et2C6H3, L-L = p-Ph2PC6H4PPh2, Ph2PC═CPPh2, Me2PCH2CH2PMe2, Ph2PCH2CH2PPh2, Ph2PCH2CH2CH2PPh2. Comparison of the v(? N═C) IR patterns, electronic spectra, and molar conductivity values of these bimetallic complexes with data for other Co(I)-organoisocyanide complexes indicates that the two -Co(CNR)4 moieties are almost totally independent of each other. Recorded λmax values are the same as for the [Co(CNR)4L-L]BF4 complexes, but the ε values, although very large, are less than double. ΛM values in acetone, and probably also in CH2Cl2, are better interpreted as twice the normal conductivity for 1:1 electrolytes than conductivity for 2:1 electrolytes.  相似文献   

10.
A series of ruthenium alkenylacetylide complexes trans-[Ru{C≡CC(=CH2)R}Cl(dppe)2] (R=Ph ( 1 a ), cC4H3S ( 1 b ), 4-MeS-C6H4 ( 1 c ), 3,3-dimethyl-2,3-dihydrobenzo[b]thiophene (DMBT) ( 1 d )) or trans-[Ru{C≡C-cC6H9}Cl(dppe)2] ( 1 e ) were allowed to react with the corresponding propargylic alcohol HC≡CC(Me)R(OH) (R=Ph ( A ), cC4H3S ( B ), 4-MeS-C6H4 ( C ), DMBT ( D ) or HC≡C-cC6H10(OH) ( E ) in the presence of TlBF4 and DBU to presumably give alkenylacetylide/allenylidene intermediates trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dppe)2]PF6 ([ 2 ]PF6). These complexes were not isolated but deprotonated to give the isolable bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dppe)2] (R=Ph ( 3 a ), cC4H3S ( 3 b ), 4-MeS-C6H4 ( 3 c ), DMBT ( 3 d )) and trans-[Ru{C≡C-cC6H9}2(dppe)2] ( 3 e ). Analogous reactions of trans-[Ru(CH3)2(dmpe)2], featuring the more electron-donating 1,2-bis(dimethylphosphino)ethane (dmpe) ancillary ligands, with the propargylic alcohols A or C and NH4PF6 in methanol allowed isolation of the intermediate mixed alkenylacetylide/allenylidene complexes trans-[Ru{C≡CC(=CH2)R}{C=C=C(Me)}(dmpe)2]PF6 (R=Ph ([ 4 a ]PF6), 4-MeS-C6H4 ([ 4 c ]PF6). Deprotonation of [ 4 a ]PF6 or [ 4 c ]PF6 gave the symmetric bis(alkenylacetylide) complexes trans-[Ru{C≡CC(=CH2)R}2(dmpe)2] (R=Ph ( 5 a ), 4-MeS-C6H4 ( 5 c )), the first of their kind containing the dmpe ancillary ligand sphere. Attempts to isolate bis(allenylidene) complexes [Ru{C=C=C(Me)R}2(PP)2]2+ (PP=dppe, dmpe) from treatment of the bis(alkenylacetylide) species 3 or 5 with HBF4 ⋅ Et2O were ultimately unsuccessful.  相似文献   

11.
Oxidation of the complexes trans-[M(CNR)2(dppe)2] (A) (M = Mo or W; R = Me, But or CH3C6H4-4; dppe = Ph2PCH2CH2PPh2) with diiodine or silver (I) salts gives the paramagnetic cations trans-[M(CNR)2(dppe)2]+, (M = Mo, R = CH3C6H4-4; M = W, R = But) and trans-[M(CNR)2(dppe)2]2+ (M = Mo, R = Me or CH3C6H4-4; M = W, R = Me or But). Mixtures of products are generally produced when dichlorine or dibromine are the oxidising agents, however pure salts, the seven-coordinate complex cations [MX(CNC6H4CH3-4)2(dppe)2]+ (B, X = Cl or Br) have been isolated. A simple molecular orbital scheme is proposed for complexes (A) and used to discuss their electronic spectra and their oxidation.  相似文献   

12.
Reaction of NCC6H4X-4 (X  Me, OMe, or Cl) with trans-[ReCl(N2)(dppe)2] (dppe  Ph2PCH2CH2PPh2), at room temperature, in the presence of Tl[BF4], gives the corresponding complexes cis-[Re(NCC6H4X-4)2(dppe)2][BF4] (1); the crystal structure of 1 (X  Me) has been determined by single crystal X-ray diffraction analysis.  相似文献   

13.
Treatment of a THF solution of trans-[ReCl(N2)(dppe)2] (dppe = Ph2PCH2CH2PPh2) with NO, in the presence of Tl[BF4], forms trans-[Re(NO)2(dppe)2][BF4], a rare formal 20-electron d8-rhenium nitrosyl complex which, by reaction with HX (X = BF4, Cl or HSO4), gives trans-[ReF(NO)(dppe)2][BF4] (2) (the X-ray structure of which is reported) or trans-[ReX(NO)(dppe)2]X (3, X = Cl or HSO4), respectively, as well as nitrous oxide.  相似文献   

14.
[(η-C5H5)Ru{Ph2PCHRCHR′PPh2}({C(OCH3)CH2C6H5})]PF6 (where R, R′ = H or CH3) reacts with LiAlH4 in THF at ?80° C to give the corresponding 2-phenylethyl complexes, which have an antiperiplanar conformation around the H2CCH2 bond in solution; the reaction takes place with retention of configuration at the ruthenium atom.  相似文献   

15.
Photoinduced oxidative addition of the solvent CH2Cl2 to (Ph3P)2Pt(C2H4) with formation of cis/trans-(Ph3P)2PtCl(CH2Cl) and cis-Cl2Pt(PPh3)2 is observed over several days at ambient temperature. In the presence of the double ylide (R3Si)2NP( NSiR3)2, R  CH3, this reaction occurs even in the dark. Sunlight or irradiation with a 500 W lamp increases, whereas addition duroquinone decreases, the rate of this addition reaction. This indicates that, at least in the presence of natural light (wavelength > 290 nm), the formation of free radicals is involved.  相似文献   

16.
Iron(II) Phosphane Complexes. Synthesis and Crystal Structures of [Fe2I4(dppe)2], [Fe2(SR)4(dppe)2], [Fe(SR′)2(dppp)] and [Fe(SR)2(PMePh2)2] (dppe = Ph2P(CH2)2PPh2; dppp = Ph2P(CH2)3PPh2; R = 2,4,6-Me3C6H2; R′ = 2,4-tBuC6H3) The title compounds were isolated and their structures determined by crystallographic methods. [Fe2I4(dppe)2] ( 1 ) and [Fe2(SR)4(dppe)2] ( 2 ) form dimeric complexes with the bidentate phosphane binding to different iron atoms. The resulting ten-membered rings of both compounds exhibit a nearly identical conformation. The central FeS2P2 units of the mononuclear complexes [Fe(SR′)2(dppp)] ( 3 ) and [Fe(SR)2(PMePh2)2] ( 4 ) show like 2 large deviations from ideal C2v symmetry with bonding angles around the central iron atom ranging from 97.2, 92.5, and 96.5° (angle P? Fe? P in 2, 3 , and 4 , respectively) to 129.0, 129.9, and 133.6° (angle S? Fe? S in 2, 3 , and 4 , respectively).  相似文献   

17.
Chemistry of Polyfunctional Molecules. 82. New Rhodium(1) Chelate Complexes with N,N-Bis(diphenylphosphino) alkyl- and -arylamines . [Rh(μ-Cl)(CO)2]2 ( 1 ) reacts with (Ph2P)2NR (2, a: R = C6H5, b: R = p-C6H4CH3) in a molar ratio of 1:2 to give the square plane, ionic complexes [Rh{(PH2P)2NR}2] [cis-Rh(CO)2Cl2] ( 3a, b ). By the reactions of [Rh(μ-Cl)(C8H12)]2(C8H12 = 1.5-Cyclooctadiene) (4) with (Ph2P)2NR ( 2a–d ) (c: R = CH3, d: R = C2H5) in the molar ratios of 1:4 the square plane 1:1 electrolytes [Rh{(Ph2P)2NR}2]Cl ( 5a–d ) are obtained. Upon treatment of 5a–d in dichloromethane with CO the complexes [Rh(CO){(Ph2P)2NR}2]Cl ( 6a–d ) are formed. They are only stable in solution and in CO atmosphere and were identified by infrared spectroscopy. The new complexes have been characterized, as far as possible, by conductometry, IR; FIR, Raman, 31P-NMR, and 1H-NMR spectra.  相似文献   

18.
The bidentate phosphine 2,11-bis(diphenylphosphinomethyl)benzo [c]phenanthrene ( 1 ) has been used to prepare the mononuclear, square planar complexes trans-[MX(CO)( 1 )] and trans-[M(CO)(CH3CN)( 1 )][BF4] (M = Rh, Ir; X = Cl, Br, I, NCS). It is found that the tendency of these complexes to form adducts with CO, O2 and SO2 is significantly lower than that of the corresponding Ph3P complexes. The oxidative-addition reactions of complexes trans-[IrX (CO) ( 1 )] with hydrogen halides give the six-coordinate species [IrHX2(CO) ( 1 )]. The complexes [IrH2I (CO) ( 1 )] and [IrH2L (CO) ( 1 )] [BF4] (L = CO and CH3CN) have been obtained from hydrogen and the corresponding substrates. The model compounds trans-[MCl (CO) (Ph2PCH2Ph)2] (M = Rh, Ir), trans-[Ir (CO) (CH3CN) (Ph2PCH2Ph)2] [BF4], [IrHCl2(CO)(Ph2PCH2Ph)2] and [IrH2(CO)2(Ph2PCH2Ph)2] [BF4] have been prepared and their special parameters are compared with those of the corresponding complexes of ligand 1 . The influence of the static requirements of this ligand on the chemistry of its rhodium and iridium complexes is discussed.  相似文献   

19.
The polydentate phosphinoamines 1,3‐{(Ph2P)2N}2C6H4 and 2,6‐{(Ph2P)2N}2C5H3N have been prepared in a single step from the reaction of the amines 1,3‐(NH2)2C6H4 or 2,6‐(NH2)2C5H3N with Ph2PCl in presence of Et3N (1 : 4 : 4 molar ratio) in CH2Cl2. Reaction of 1,3‐{(Ph2P)2N}2C6H4 or 2,6‐{(Ph2P)2N}2C5H3N with elemental sulfur or selenium in CH2Cl2 affords the corresponding tetrasulfide or tetraselenide, respectively, in good yield. The complexes [1,3‐{Mo(CO)4(Ph2P)2N}2(C6H4)] and [2,6‐{Mo(CO)4(Ph2P)2N}2(C5H3N)] were prepared from the reaction of these phosphinoamines with [Mo(CO)4(nbd)] (nbd=norbornadiene) in toluene, and the structure of the latter complex has been determined by single‐crystal X‐ray diffraction analysis.  相似文献   

20.
The new symmetrical diphosphonium salt [Ph2P(CH2)2PPh2(CH2C(O)C6H4Br)2] Br2 ( S ) was synthesized in the reaction of 1,2‐bis (diphenylphosphino) ethane (dppe) and related ketone. Further treatment with NEt3 gave the symmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)2] ( Y 1 ). The unsymmetrical α‐keto stabilized diphosphine ylide [Ph2P(CH2)2PPh2(CHC(O)C6H4Br)] ( Y 2 ) was synthesized in the reaction of diphosphine in 1:1 ratio with 2.3′‐dibromoacetophenone, then treatment with NEt3. The reaction of dibromo (1,5‐cyclooctadiene)palladium (II), [PdBr2(COD)] with this ligand ( Y 1 ) in equimolar ratio gave the new C,C‐chelated [PdBr2(Ph2P(CH2)2PPh2(C(H)C(O)C6H4Br)2)] ( 1 ) and with unsymmetrical phosphorus ylide [Ph2P(CH2)2PPh2C(H)C(O)C6H4Br] ( Y 2 ) gave the new P, C‐chelated palladacycle complex [PdBr2(Ph2P(CH2)2PPh2C(H)C(O)Br)] ( 2 ). These compounds were characterized successfully by FT‐IR, NMR (1H, 13C and 31P) spectroscopic methods and the crystal structure of Y 1 and 2 were elucidated by single crystal X‐ray diffraction. The results indicated that the complex 1 was C, C‐chelated whereas complex 2 was P, C‐chelated. These air/moisture stable complexes were employed as efficient catalysts for the Mizoroki‐Heck cross‐coupling reaction of several aryl chlorides, and the Taguchi method was used to optimize the yield of Mizoroki‐Heck coupling. The optimum condition was found to be as followed: base; K2CO3, solvent; DMF and loading of catalyst; 0.005 mmol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号