首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
New high-level quantum chemical calculations have been undertaken to understand the rates and mechanisms of the reactive and associative channels for the reactants C2H2(+) + H2. The reactive channel, which produces C2H3(+) + H, has been shown to be slightly endothermic, confirming earlier calculations at a somewhat lower level and in agreement with some recent experimental work. The associative channel, leading to C2H4+, has been shown to proceed via a transition state with negative energy relative to the reactants, so that association is predicted to be efficient. This result is in conflict with an earlier theoretical study but in agreement with low-temperature experimental measurements.  相似文献   

2.
A three-dimensional potential energy surface for the 2A′ ground state of the system (Ne? H2)+ (2Σ+ in collinear geometry) has been calculated at SCF and CEPA levels. This surface describes the abstraction reaction which is endoergic by 0.57 eV (ΔH00) and has been studied recently by different experimental groups at low collision energies. Our CEPA calculations yield an endoergicity of 0.55 eV (ΔH00). The 2A′ surface has a minimum at collinear geometry with RNe—H = 2.29 a0 and RH? H = 2.08 a0 and a well depth of 0.49 eV relative to Ne + H+2. The effects of electron correlation on the shape of the surface and on the well depth are discussed. An analytic fit of the collinear part of the surface has been constructed based on Simon's proposal of using polynomials in the coordinates (R? Re)/R instead of (R? Re). The fitted potential is used for quantum mechanical scattering calculations with the finite element method (FEM ). Preliminary results for reaction probabilities for H+2 in different vibrationally excited states are given and compared to the experimental results.  相似文献   

3.
A quasiclassical trajectory surface hopping method has been used to study H(v) + H2 → H + H for v = 0, 3, 7, 10, 13, and 17 with an emphasis on determining the H internal energy and angular momentum distributions for high v. For v = 13 and 17, significant cross sections are found for producing H at energies above its dissociation energy. An average metastable H lifetime of 11.5 ps for v = 13 and 4.7 ps for v = 17 is found, but there is also a much longer lived component to the lifetime distributions that is more important for v = 13 than for v = 17. Some of the longer lived metastables correspond to high angular momentum orbiting states of H, but other sources of metastability are also present.  相似文献   

4.
5.
The complex-forming CH + H2 --> CH2 + H reaction is studied employing a recently developed global potential energy function. The reaction probability in the total angular momentum J = 0 limit is estimated with a four-atom quantum wave packet method and compared with classical trajectory and statistical theory results. The formation of complexes from different reactant internal states is also determined with wave packet calculations. While there is no barrier to reaction along the minimum energy path, we find that there are angular constraints to complex formation. Trajectory-based estimates of the low-pressure rate constants are made and compared with experimental results. We find that zero-point energy violation in the trajectories is a particularly severe problem for this reaction.  相似文献   

6.
The ortho-para conversion of H(3) (+) and H(2) in the reaction H(3) (+)+H(2)-->(H(5) (+))(*)-->H(3) (+)+H(2) in interstellar space is possible by scrambling the five protons via (H(5) (+))(*) complex formation. The product distribution of the ortho-para conversion reaction can be given by ratios of cumulative reaction probabilities (CRP) calculated by microcanonical statistical theory with conservation of energy, motional angular momentum, nuclear spin, and parity. A statistical method to calculate the state-to-state reaction probabilities for given initial nuclear spin species, rotational states, and collision energies is developed using a simple semiclassical approximation of tunneling and above-barrier reflection. A new calculation method of branching ratios for given total nuclear spins and scrambling mechanisms is also developed. The anisotropic long-range electrostatic interaction potential of H(2) in the Coulomb field of H(3) (+) is taken into account using the first-order perturbation theory in forming the complex. The CRPs and the product distribution of the ortho-para conversion reaction at very low energies with reactants in their ground vibronic and lowest rotational states for given initial nuclear spin species are presented as a function of collision energy assuming complete proton scrambling or incomplete proton scrambling. The authors show that the product distribution at very low energies (or very low temperatures) differs substantially from the high energy (or high temperature) limit branching ratios.  相似文献   

7.
This work presents results of quantum mechanical calculations of reaction probabilities for the ion-neutral molecule collisions H- + D2 <--> HD + D-. Time-dependent wave packet propagations for total angular momentum J not equal to 0, including the full Coriolis coupling, are performed. The calculated state-to-state reaction probabilities using product Jacobi coordinates are compared with energy-resolved reaction probabilities calculated with the flux-operator using reactant Jacobi coordinates and with time-independent calculations. Differences between nearly converged integral cross sections and those using the J-shifting method and centrifugal sudden approximation and comparison with experimental results will be presented.  相似文献   

8.
The reaction of electronically excited singlet methylene (1CH2) with acetylene (C2H2) was studied using the method of crossed molecular beams at a mean collision energy of 3.0 kcal/mol. The angular and velocity distributions of the propargyl radical (C3H3) products were measured using single photon ionization (9.6 eV) at the advanced light source. The measured distributions indicate that the mechanism involves formation of a long-lived C3H4 complex followed by simple C-H bond fission producing C3H3+H. This work, which is the first crossed beams study of a reaction involving an electronically excited polyatomic molecule, demonstrates the feasibility of crossed molecular beam studies of reactions involving 1CH2.  相似文献   

9.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H+NH3-->H2+NH2 reaction using a seven-dimensional model and an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values. The total reaction probabilities are calculated for the initial ground and seven excited states of NH3 with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants are calculated for the temperature range 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the total reaction probabilities are overall very small, (b) the symmetric and asymmetric NH stretch excitations enhance the reaction significantly and almost all of the excited energy deposited was used to reduce the reaction threshold, (c) the excitation of the umbrella and bending motion have a smaller contribution to the enhancement of reactivity, (d) the main contribution to the thermal rate constants is thought to come from the ground state at low temperatures and from the stretch excited states at high temperatures, and (e) the calculated thermal rate constants are three to ten times smaller than the experimental data and transition state theory results.  相似文献   

10.
Tunneling chemical reactions D + H2 --> DH + H and D + DH --> D2 + H in solid HD-H2 and D2-H2 mixtures were studied in the temperature range between 4 and 8 K. These reactions were initiated by UV photolysis of DI molecules doped in these solids for 30 s and followed by measuring the time course of electron-spin-resonance (ESR) intensities of D and H atoms. ESR intensity of D atoms produced by the photolysis decreases but that of H atoms increases with time. Time course of the D and H intensities has the fast and slow processes. The fast process, which finishes within approximately 300 s after the photolysis, is assigned to the reaction of D atom with one of its nearest-neighboring H2 molecules, D(H2)n(HD)(12-n) --> H(H2)(n-1)(HD)(13-n) or D(H2)n(D2)(12-n) --> H(HD)(H2)(n-1)(D2)(12-n) for 12 > or = n > or = 1. Rate constant for the D + H2 reaction between neighboring D atom-H2 molecule pair is determined to be (7.5 +/- 0.7) x 10(-3) s(-1) in solid HD-H2 and (1.3+/-0.3) x 10(-2) s(-1) in D2-H2 at 4.1 K, which is very close to that calculated based on the theory of chemical reaction in gas phase by Hancock et al. [J. Chem. Phys. 91, 3492 (1989)] and Takayanagi and Sato [J. Chem. Phys. 92, 2862 (1990)]. This rate constant was found to be independent of temperature up to 7 K within experimental error of +/-30%. The slow process is assigned to the reaction of D atom produced in a cage fully surrounded by HD or D2 molecules, D(HD)12 or D(D2)12. This D atom undergoes the D + DH reaction with one of its nearest-neighboring HD molecules in solid HD-H2 or diffuses to the neighbor of H2 molecules to allow the D + H2 reaction in solid HD-H2 and D2-H2. The former is the main channel in solid HD-H2 below 6 K where D atoms diffuse very slowly, whereas the latter dominates over the former above 6 K. Rate for the reactions in the slow process is independent of temperature below 6 K but increases with the increase in temperature above 6 K. We found that the increase is due to the increase in hopping rate of D atoms to the neighbor of H2 molecules. Rate constant for the D + DH reaction was found to be independent of temperature up to 7 K as well.  相似文献   

11.
Canonical rate constants for both the forward and reverse H + O(2) <--> O + OH reactions were calculated using a quantum wave packet-based statistical model on the DMBE IV potential energy surface of Varandas and co-workers. For these bimolecular reactions, the results show reasonably good agreement with available experimental and theoretical data up to 1500 K. In addition, the capture rate for the H + O(2) --> HO(2) addition reaction at the high-pressure limit was obtained on the same potential using a time-independent quantum capture method. Excellent agreement with experimental and quasi-classical trajectory results was obtained except for at very low temperatures, where a reaction threshold was found and attributed to the centrifugal barrier of the orbital motion.  相似文献   

12.
We report in this paper a quantum dynamics study for the reaction H+NH3-->NH2+H2 on the potential energy surface of Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The quantum dynamics calculation employs the semirigid vibrating rotor target model [J. Z. H. Zhang, J. Chem. Phys. 111, 3929 (1999)] and time-dependent wave packet method to propagate the wave function. Initial state-specific reaction probabilities are obtained, and an energy correction scheme is employed to account for zero point energy changes for the neglected degrees of freedom in the dynamics treatment. Tunneling effect is observed in the energy dependency of reaction probability, similar to those found in H+CH4 reaction. The influence of rovibrational excitation on reaction probability and stereodynamical effect are investigated. Reaction rate constants from the initial ground state are calculated and are compared to those from the transition state theory and experimental measurement.  相似文献   

13.
We present a three-dimensional quantum scattering model to treat reactions of the type H + C2H6 --> H2 + C2H5. The model allows the torsional and the stretching degrees of freedom to be treated explicitly. Zero-point energies of the remaining modes are taken into account in electronic structure calculations. An analytical potential-energy surface was developed from a minimal number of ab initio geometry evaluations using the CCSD(T,full)/cc-pVTZ//MP2(full)/cc-pVTZ level of theory. The reaction is endothermic by 1.5 kcal mol(-1) and exhibits a vibrationally adiabatic barrier of 12.0 kcal mol(-1). The results show that the torsional mode influences reactivity when coupled with the vibrational C-H stretching mode. We also found that ethyl radical products are formed internally excited in the torsional mode.  相似文献   

14.
We present the Born-Oppenheimer (BO) and Renner-Teller (RT) quantum dynamics of the reaction (14)N((2)D)+(1)H(2)(X (1)Sigma(g) (+))-->NH(X (3)Sigma(-))+H((2)S), considering the NH(2) electronic states X (2)B(1) and A (2)A(1). These states correlate to the same (2)Pi(u) linear species, are coupled by RT nonadiabatic effects, and give NH(X (3)Sigma(-))+H and NH(a (1)Delta)+H, respectively. We develop the Hamiltonian matrix elements in the R embedding of the Jacobi coordinates and in the adiabatic electronic representation, using the permutation-inversion symmetry, and taking into account the nuclear-spin statistics. Collision observables are calculated via the real wave-packet (WP) and flux methods, using the potential-energy surfaces of Santoro et al. [J. Phys. Chem. A 106, 8276 (2002)]. WP snapshots show that the reaction proceeds via an insertion mechanism, and that the RT-WP avoids the A (2)A(1) potential barrier, jumping from the excited to the ground surface and giving mainly the NH(X (3)Sigma(-)) products. X (2)B(1) BO probabilities and cross sections show large tunnel effects and are approximately four to ten times larger than the A (2)A(1) ones. This implies a BO rate-constant ratio k(X (2)B(1))k(A (2)A(1)) approximately 10(5) at 300 K, i.e., a negligible BO formation of NH(a (1)Delta). When H(2) is rotationally excited, RT couplings reduce slightly the X (2)B(1) reaction observables, but enhance strongly the A (2)A(1) reactivity. These couplings are important at all collision energies, reduce the collision threshold, and increase remarkably reaction probabilities and cross sections. The RT k(A (2)A(1)) is thus approximately 3.3 order of magnitude larger than the BO value, and degeneracy-averaged, initial-state-resolved rate constants increase by approximately 13% and by approximately 47% at 300 and 500 K, respectively. Owing to an overestimation of the X (2)B(1) potential barrier, the calculated thermal rate is too low with respect to that observed, but we obtain a good agreement by shifting down the calculated cross section.  相似文献   

15.
Initial state-selected time-dependent wave packet dynamics calculations have been performed for the H2+NH2-->H+NH3 reaction using a seven dimensional model on an analytical potential energy surface based on the one developed by Corchado and Espinosa-Garcia [J. Chem. Phys. 106, 4013 (1997)]. The model assumes that the two spectator NH bonds are fixed at their equilibrium values and nonreactive NH2 group keeps C2v symmetry and the rotation-vibration coupling in NH2 is neglected. The total reaction probabilities are calculated when the two reactants are initially at their ground states, when the NH2 bending mode is excited, and when H2 is on its first vibrational excited state, with total angular momentum J=0. The converged cross sections for the reaction are also reported for these initial states. Thermal rate constants and equilibrium constants are calculated for the temperature range of 200-2000 K and compared with transition state theory results and the available experimental data. The study shows that (a) the reaction is dominated by ground-state reactivity and the main contribution to the thermal rate constants is thought to come from this state, (b) the excitation energy of H2 was used to enhance reactivity while the excitation of the NH2 bending mode hampers the reaction, (c) the calculated thermal rate constants are very close to the experimental data and transition state theory results at high and middle temperature, while they are ten times higher than that of transition state theory at low temperature (T=200 K), and (d) the equilibrium constants results indicate that the approximations applied may have different roles in the forward and reverse reactions.  相似文献   

16.
Experimental measurements of the kinetics of the title reactions extend to temperature ranges of 1360 K for the ammonia‐hydrogen reaction and of 1602 K for the methane‐hydrogen reaction. Curved plots of ln(k) versus 1/T are obtained. Many theoretical calculations modeling these reactions routinely use tunneling corrections to match experiment. The steepness and curvatures of the plots are modeled successfully in this work and are shown to be caused solely by changes in the bond dissociation energies of the bonds involved in the reactions without invoking tunneling or any other adjustable parameters. The conclusion that tunneling does not contribute significantly to the rates in the temperature range of the measurements is in stark contrast with those theoretical calculations invoking large tunneling factors in the experimental temperature range. Support for the conclusion is provided by theoretical calculations of harmonic quantum transition state theory implementing instanton theory. There is direct experimental evidence that significant tunneling occurs in some H atom transfers, as with isotopomers of H2 + ·H and other H transfers at very low temperatures. However, there is no direct experimental evidence of significant tunneling contributions to the rates of the title reactions in the temperature range of the measurements. Insights are gained into what specific forces must be overcome by the enthalpy of activation for reaction to occur.  相似文献   

17.
A recently developed method for calculating anharmonic vibrational energy levels at nonstationary points along a reaction path that is based on second-order perturbation theory in curvilinear coordinates is combined with variational transition state theory with semiclassical multidimensional tunneling approximations to calculate thermal rate constants for the title reaction. Two different potential energy surfaces were employed for these calculations, an improved version of the author's surface 5 and the WSLFH surface of Wu et al. [J. Chem. Phys. 113, 3150 (2000)]. We present detailed comparisons of rate constants computed for the two surfaces with and without anharmonicity and with various approximations for incorporating tunneling along the reaction path. The results for this system are quite sensitive to the surface employed, the choice of coordinates (curvilinear versus rectilinear), and the inclusion of anharmonicity. A comparison with experiment provides information on the accuracy of these surfaces.  相似文献   

18.
19.
A rigorous full dimensional time-dependent wave packet method has been developed for the reactive scattering between an atom and a tetra-atomic molecule. The method has been applied to the hydrogen abstraction reaction H+NH(3)-->H(2)+NH(2). Initial state-selected total reaction probabilities are investigated for the reactions from the ground vibrational state and from four excited vibrational states of ammonia. The total reaction probabilities from two lowest "tunneling doublets" due to the inversion barrier for the umbrella bending motion of NH(3) and from two pairs of doubly degenerate vibrational states of NH(3) are also inspected. Integral cross sections and rate constants are calculated for the reaction from the ground state with the centrifugal-sudden approximation. The calculated results are compared with those from the previous seven dimensional calculations [M. Yang and J. C. Corchado, J. Chem. Phys. 126, 214312 (2007)]. This work shows that the full dimensional rate constants are a factor of 3 larger than the corresponding seven dimensional calculated values at T=200 K and are overall smaller than those obtained from the variational transition state theory in the whole temperature region. The work also reveals that nonreactive NH bonds of NH(3) cannot be treated as spectators due to the fact that three NH bonds are coupled with each other during the reaction process.  相似文献   

20.
《Chemical physics letters》1986,127(4):343-346
In this work we use a complete surface hopping quasiclassical trajectory method to determine cross sections for the reactions H2+ + H2 → H3+ + H and the isotopic variants (H2+ + D2 and D2+ + H2). Initial translational energies ranged between 0.5 and 6 eV. The vibrational quantum number (v+) of the charged diatom is either 0 or 3. Comparing these results with our previous results with a partial treatment of surface hopping, we find essentially no change for v+ = 0 and reductions in cross sections of up to 30% for v+ = 3 trajectories.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号