首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The catalytic activity of a series of [Rh L-L chel]X complexes, in which we have varied the unsaturated ligand [L-L = cis, cis-cycloocta 1,5-diene(cod) or 2,5-norbornadiene(nbd) the nitrogen chelating ligand [chel = 2,2′-bipyridine(bipy), 2,2′-dipyridylamine(dipyam), 2,2′-bipyrazine (bipz), 4,4′-dimethyl-2,2′-bipyridine (4,4′-Me2bipy)] and the counter ion [X = PF6, ClO4, BPh4], has been examined in reactions with phyenylacetylene (PA). The catalytic behaviour of the [Rh(cod)Cl2],tmeda (tmeda = N,N,N′,N′tetramethylethylendiamine), [Rh(cod)Cl2],teda] (teda = triethylendiamine), of the dimer [Rh(cod)Cl]2, and the use of NaOH as cocatalyst in different reaction conditions was also examined. The influence of the ligands on the catalytic activity of these RhI complexes is discussed. 1H and 13C NMR spectra have shown that highly stereoregular polyphenylacetilene can be obtained. Conditions for homogeneous doping of PPA, to obtain materials whose conductivity varies over 10–11 magnitude orders, are proposed. The stability of the doped polymers is also discussed.  相似文献   

2.
The electrochemical behavior of iron diimine complexes, (H3C?N=C(R)?C(R′)=N?CH3)3Fe(II) (R, R′=H,H;H, CH3; CH3, CH3), and (C5H4N?C(R1)=N(R2))3Fe(II) (R1, R2=H, CH3; CH3, CH3) on a platinum working electrode in acetonitrile is described, and compared to that of the parent aromatic complex, tris-(2,2′-bipyridine)Fe(II). One-electron reversible oxidations were found for all the compounds studied. The electrochemical reductions show 2–3 reduction waves in the potential range studied. Only for the complexes of mixed diimine ligands or 2,2′-bipyridine, a pre-adsorption wave is also observed. It is possible to stabilize low valence states with all ligands studied. A formal iron(I) state is described for the first time for all aliphatic diimine complexes, thus showing that the acceptor properties of the diimine complexes do not depend on the presence of the aromatic rings, but on the iron-diimine chromophore.  相似文献   

3.
The composition, structure, and properties of a series of Au(III) complexes with heterocyclic diimine ligands [Au(N^N)Cl2]+, where (N^N) = 2,2′-bipyridine (Bipy), 4,4′-dimethyl-2,2′-bipyridine (DmBipy), 2,2′-biquinoline (Bqx), 1,10-phenanthroline (Phen), 2,9-dimethyl-1,10-phenanthroline (DmPhen), and 4,7-diphenyl-1,10-phenanthroline (DphPhen), were characterized by 1H NMR, electronic absorption, and emission spectroscopy and also by cyclic voltammetry. The influence of donor and acceptor substituents on the spectroscopic and electrochemical properties of the Au(III) complexes was revealed.  相似文献   

4.
Two substituted 2,2′-bipyridine lead(II) complexes, [Pb(5,5′-dm-2,2′-bpy)(tfac)2] n (1) (5,5′-dm-2,2′-bpy?=?5,5′-dimethyl-2,2′-bipyridine and tfac?=?trifluoroacetate) and [Pb2(4,4′-dmo-2,2′-bpy)2(ftfa)4] (2) (4,4′-dmo-2,2′-bpy?=?4,4′-dimethoxy-2,2′-bipyridine and ftfa?=?furoyltrifluoroacetonate), have been synthesized and characterized by elemental analysis, IR, 1H NMR, and 13C NMR spectroscopies, thermal behavior, and X-ray crystallography. Complexes 1 and 2 are 1D coordination polymer and dinuclear complex, respectively. The supramolecular features in these complexes are guided by weak directional intermolecular interactions.  相似文献   

5.
Six disubstituted ligands based upon 2-(2′-pyridinyl/pyrazinyl)quinoline-4-carboxylic acids have been synthesised, solvent-free, in one step from a range of commercially available isatin derivatives. These species behave as ancillary chelating ligands for Ir(III) complexes of the form [Ir(C^N)2(N^N)]PF6 (where C^N=cyclometalating ligand; N^N=2-(2′-pyridinyl/pyrazinyl)quinoline-4-carboxylic acids). An X-ray crystallographic study on one complex shows a distorted octahedral geometry wherein a cis-C,C and trans-N,N coordination mode is observed for the cyclometalating ligands. DFT calculations predicted that variations in N^N ligand from 2,2′-bipyridine to L1 – 6 should localise the LUMO on to the Ln ligand and that the complexes are predicted to display MLCT/LLCT character. All complexes displayed luminescence in the deep red part of the visible region (674–679 nm) and emit from triplet states, but with little apparent tuning as a function of L1 – 6 . Further time-resolved transient absorption spectroscopy supports the participation of these triplet states to the excited state character.  相似文献   

6.
The synthesis of tri-heteroleptic complex of Ru(II) with diimine ligands is describe. Ten compounds [Ru(R2bpy) (biq) (L)][PF6]2 (R = H, CH3); L = 2,2′-bipyridine (bpy), 4,4′-dimethyl-2,2′-bipyridine (Me2bpy), 2,2′-bipyrimidine (bpm), 2,2′-biisoquinoline (biiq), 1,10-phenanthroline (phen), dipyrido[3,2-c:2′,3′-e]pyridazine (taphen), 2,2′-biquinoline (biq), 6,7-dihydrodipyrido[2,3-b:3,2-j][1,10]-phenanthroline (dinapy), 2-(2[pyridyl)quinoline (pq), 1-(2-pyrimidyl)pyrazole] (pzpm), 2,2′-biimidazole (H2biim) are characterized by elemental analysis, electronic and 1H-NMR spectroscopy. The relative photosustitution rates of biq in MeCN are given at three temperatures.  相似文献   

7.
Lead(II) 4,4,4-trifluoro-1-phenyl-1,3-butandionate (TFPB?) complexes with 1,10-phenanthroline (phen) and 2,2′-bipyridine (2,2′-bipy), [Pb(L)(TFPB)2], have been synthesized and characterized by elemental analysis, IR-, 1H NMR spectroscopy and studied by X-ray crystallography. The self-assembly of [Pb(L)(TFPB)2] complexes, (L?=?phen or 2,2′-bipy) is caused by CH?···?F–C, C–H?···?O–C and π–π stacking interactions. The thermal stabilities of compounds were studied by thermal gravimetric (TG) and differential thermal analyses (DTA).  相似文献   

8.
A number of cationic rhodium(I) complexes of the type [Rh(CO)2(NN)]ClO4, [Rh(CO)2L3]ClO4 and [Rh(CO)(NN)L2]ClO4, where (NN) is 2,2-bipyridine or 1,10-phenanthroline and L is a tertiary phosphine or arsine, have been isolated and their structures assigned. The configuration of the complexes ion [Rh(CO)2L3]+ appears to depend critically on the size of the ligand L.  相似文献   

9.
In polymerization reactions of phenylacetylene three different types of polyphenylacetylene (PPA) were prepared by using Rh and Pt complexes as catalysts in different reaction conditions. Type I PPA is obtained with [Rh (COD) Chel] PF6 complexes (COD = cis,cis-cycloocta 1,5-diene; chel = 2,2′-bipyridine, 1,10-phenanthroline, 2,9-dimethyl-1,10-phenanthroline, 5,6-dimethyl-1,10-phenanthroline, 3,4,7,8-tetramethyl-1,10-phenanthroline) in bulk, benzene methanol, while type II PPA is obtained with the same catalysts in p-dioxane and type III PPA in the presence of [Pt (? C?CPh)2(PPh3)2] in bulk. Type I, II, and III PPA exhibit different IR and 1H-NMR spectra, which have been compared with literature data. Correlations proposed by different Authors between spectral properties of PPA and chain structures are also discussed.  相似文献   

10.
The complexation reaction of trans-[RuCl2(Dpte)2] (Dpte – (diphenylthio)ethane) with mixed diimine ligands 2,2"-bipyridine, pyridylquinoline, 4,6-dichloro-2-(2-pyridyl)pyrimidine, 4,6-dichloro-5-methyl-2-(2-pyridyl)pyrimidine, and 4,6-dichloro-5-phenyl-2-(2-pyridyl)pyrimidine produces new Ru(II) mixed-ligand complexes. These complexes exhibit maximum photo- and chemical stability and high absorptivity. The above complexes have been characterized using IR, 1H and 13C NMR, electronic absorption spectroscopy, and elemental analysis.  相似文献   

11.
Two lead(II)-thiocyanato coordination polymers with 5,5′-dimethyl-2,2′-bipyridine (5,5′-dm-2,2′-bpy) and 4,4′-dimethoxy-2,2′-bipyridine (4,4′-dmo-2,2′-bpy) as chelating ligands were synthesized and characterized by elemental analysis, IR and 1H-NMR spectroscopy, thermal behavior, and X-ray crystallography. These complexes have formulas [Pb(5,5′-dm-2,2′-bpy)(NCS)2] n (1) and [Pb(4,4′-dmo-2,2′-bpy)(NCS)2] n (2). The coordination numbers of PbII in 1 and 2 are four, PbN4, with “stereo-chemically active” electron pairs and hemidirected coordination spheres. Considering Pb···S as weak bonds, 1 and 2 are 1- and 2-D coordination polymers, respectively. The supramolecular features in these complexes are guided/controlled by weak directional intermolecular interactions.  相似文献   

12.
Platinum(II) complexes, [Pt(Lx)X2] (16), where X = Br or I and Lx = 2,2′-bipyridine or 1,10-phenanthroline derivatives (5,5′-dimethyl-2,2′-bipyridine (5-Mebpy), 4,4′-dimethyl-2,2′-bipyridine (4-Mebpy), and 5-amino-1,10-phenanthroline (5-NH2phen)) were prepared. The complexes were characterized by the elemental analysis, mass spectrometry, infrared, and multinuclear (1H, 13C and 195Pt) 1-D and 2-D NMR spectroscopies, and by single-crystal X-ray analysis of [Pt(4-Mebpy)I2] (4). All the platinum(II) complexes (16) were evaluated for in vitro cytotoxicity against human cancer cell lines A2780 and A2780R, and against non-malignant MRC5 cell line. All the complexes were nontoxic up to the 50 μM concentration, although they were found to readily bind to calf-thymus DNA (CT-DNA), as determined by spectrophotometric titration (Kb ≈ 107 M?1) and ethidium bromide displacement assay.  相似文献   

13.
Isolation of four optically active isomers of the 5-substituted 2,2′-bipyridine complexes [Co(cbpy)3]3+ (cbpy?=?5-carboxy-2,2′-bipyridine) was achieved using cation-exchange column chromatography (SP-Sephadex C-25) eluting with either sodium (?)-O,O′-dibenzoyltartrate or sodium ((+)-tartrato)antimonate(III). Structure optimization and molecular dynamics (MD) simulations of the system consisting of the propeller-type complex fac-[Co(cbpy-H)3] (cbpy-H?=?2,2′-bipyridine-5-carboxylate anion) and 80 water molecules were performed using the AMBER?6 program. Results of the MD simulation revealed that distinct translating and rotating behaviors can be obtained in this complex in aqueous solution upon IR irradiation.  相似文献   

14.
Novel carbonyl complexes of rhodium(I) and rhodium(III) containing the bidenate nitrogen donor ligand 2,2′-biquinoline (biq) have been prepared; they are of the types RhX(CO)2 biq and RhX(CO)biq (X = Cl, Br, I). Cationic carbonyl and substituted carbonyl complexes of the types [Rh(CO)2biq]ClO4 and [Rh(CO)biqL2]ClO4, where L is tertiary phosphine or arsine have also been isolated. In spite of considerable steric crowding around the nitrogen atoms, 2,2′-biquinoline behaves much like 2,2′-bipyridine in forming carbonyl complexes of rhodium.  相似文献   

15.
Synthesis, EPR and X-Ray Structure of mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) — a new Technetium(VI) Nitrido Complex mer-Trichloro(2,2′-bipyridine)nitridotechnetium(VI) has been prepared by the reaction of (NBu4)[TcNCl4] with 2,2′-bipyridine in acetonitrile, whereas the same procedure gives in methanol the technetium(V) cation [TcNCl(bipy)2]+. The EPR spectrum of [TcNCl3(bipy)] suggests a meridional coordination of the three chloro ligands. [TcNCl3(bipy)] crystallizes monoclinic in the space group P21/n; a = 8.572(1), b = 15.462(1), c = 10.110(1) Å, β = 104.21(1)°, Z = 4. The R value converged at 0.034 on the basis of 3 040 reflections. The technetium atom is distorted octahedrally coordinated with the chloro ligands meridionally cis with respect to the nitrido nitrogen. The Tc? N(1) bond length is 1.669(4) Å, and the Tc? N(3) bond (2.371(4) Å) is significantly lengthened due to the structural trans labilizing influence of the “N3?” ligand.  相似文献   

16.
The synthesis of a mononuclear Rh(III) complex, as a representative example of a series of related species, containing two cyclometallating ligands ppy (2-phenylpyridine) and one diimine bpy (2,2′-bipyridine) from a binuclear Cl-bridged compound is described. The absorption spectrum shows a maximum at 364 nm (ε = 7000), with a very weak shoulder (ε = 10) at 454 nm. This band is tentatively assigned to a metal-to-ligand charge-transfer transition. A reversible, one-electron reduction appears in the cyclic voltammogram at E1/2 = ?1.41 V (vs. NHE) and a irreversible oxydation at Ep = + 1.1 V. A detailed NMR analysis including 13C-NMR, NOE, SFORD as well as deuteration of the bpy ligand indicates the formation of only one isomer, having a C2 axis, bisecting the bpy ligand, with the two carbon ligands in cis-position. 103Rh, 13C and 103Rh,H couplings are observed.  相似文献   

17.
The surface enhanced resonance Raman spectroscopy (SERRS) of a series of tris(2,2′-bipyridine)ruthenium(II) complexes on chemically produced silver films is reported. The SERR spectra of [Ru(bipy)3]2+, several tris complexes of Ru(II) containing substituted 2,2′-bipyridine (4,4′-dimethyl-,4,4′diphenyl-, 4,4′-diamino- and 4,4′-diethylcarboxylate-2,2′-bipyridine) ligands and the neutral cis-bis complexes [Ru(bipy)2(NCS)2] and [Ru(bipy)2Cl2] show very high band intensities. The large enhancement arises from the combination of the inherent resonance Raman effect and the surface plasmon resonance (due to the rough nature of the silver film). The molecules are not chemisorbed on the silver surface and hence the enhancement occurs solely via the electromagnetic mechanism. Ale SERR spectra are virtually free of the fluorescence which dominates the corresponding RR spectra thus illustrating the use of SERRS in the vibrational spectroscopy of strongly luminescing species. The SERRS spectra of the substituted 2,2′-bipyridine complexes are discussed.  相似文献   

18.
Linear and nonlinear optical properties of two new nickel(diimine)(dithiolate) complexes, nickel(4,4′‐dinitro2,2′‐bipyridyl)(tfd), Ni(NO2bipy)(tfd) , (tfd = 1,2‐trifluoromethylethene‐1,2‐dithiolate) and nickel(4,7‐diphenyl‐1,10‐phenathroline)(tfd), Ni(dpphen)(tfd) are reported. Ni(NO2bipy)(tfd) has a potent electronic acceptor substituted on the diimine ligand and exhibits an enhanced molecular first hyperpolarizability (β0 = ?31 × 10?30 esu), which is more than three times greater than that (β0 = ?10 × 10?30 esu) of Ni(dpphen)(tfd). Ni(NO2bipy)(tfd) also possesses the longest absorption wavelength, the largest solvatochromic shift, and one of the largest dipole moment changes (‐16 debye from ground to excited state) among nickel(diimine)(dithiolate) complexes. Crystal X‐ray structure of Ni(NO2bipy)(tfd) is used to compared the π‐bonding structure of central (N=C‐C=N)Ni(S‐C=C‐S) unit with that of previously known nickel(4,4′‐bis(butyloxycarbonyl)‐2,2′‐bipyridyl)(tfd), Ni(CO2Bubipy)(tfd).  相似文献   

19.
Two complexes, [Cu2(TFSA)(2,2′-bpy)4]?·?TFSA?·?8H2O (1) and {[Cu(4,4′-bpy)(H2O)2]?·?TFSA?·?6H2O} n (2) (H2TFSA?=?tetrafluorosuccinic acid, 2,2′-bpy?=?2,2′-bipyridine, and 4,4′-bpy?=?4,4′-bipyridine), have been synthesized and structurally characterized by X-ray structural analyses. Complex 1 is a binuclear molecule bridged by TFSA ligands; 2 is a 1-D chain bridged by 4,4′-bpy ligands. The asymmetric units of the two complexes are composed of cationic complexes [Cu2(TFSA)(2,2′-bpy)4]2+ (1) and [Cu(4,4′-bpy)(H2O)2]2+ (2), free TFSA anion, and independent crystallization water molecules. A unique 2-D hybrid water–TFSA anionic layer by linkage of {[(H2O)8(TFSA)]2?} n fragments consisting of 1-D T6(0)A2 water tape and TFSA anionic units by hydrogen bonds in 1 was observed. Unique 2-D hybrid water–TFSA anionic layer generated by the linkage of {[(H2O)6(TFSA)]2?} n fragments consisting of cyclic water tetramers with appended water molecules and TFSA anionic units, and 1-D metal–water tape [Cu–H2O?···?(H2O)6?···?H2O?] n in 2 were found. 3-D supramolecular networks of the two complexes consist of cationic complexes and water–TFSA anionic assemblies connected by hydrogen bonds.  相似文献   

20.
Photochemical activation of [(PNNH)Rh(N3)] (PNNH=6‐di‐(tert‐butyl)phosphinomethyl‐2,2′‐bipyridine) complex 2 produced the paramagnetic (S=1/2), [(PNN)Rh?N.‐Rh(PNN)] complex 3 (PNN?=methylene‐deprotonated PNNH), which could be crystallographically characterized. Spectroscopic investigation of 3 indicates a predominant nitridyl radical (.N2?) character, which was confirmed computationally. Complex 3 reacts selectively with CO, producing two equivalents of [(PNN)RhI(CO)] complex 4 , presumably by nitridyl radical N,N‐coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号