首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Summary Finite element approximations of the eigenpairs of differential operators are computed as eigenpairs of matrices whose elements involve integrals which must be evaluated by numerical integration. The effect of this numerical integration on the eigenvalue and eigenfunction error is estimated. Specifically, for 2nd order selfadjoint eigenvalue problems we show that finite element approximations with quadrature satisfy the well-known estimates for approximations without quadrature, provided the quadrature rules have appropriate degrees of precision.The work of this author was partially supported by the National Science Foundation under Grant DMS-84-10324  相似文献   

2.
Error estimates of the finite element method with numerical integration for differential eigenvalue problems are presented. More specifically, refined results on the eigenvalue dependence for the eigenvalue and eigenfunction errors are proved. The theoretical results are illustrated by numerical experiments for a model problem.  相似文献   

3.
Summary In a recent work by the author and J.E. Osborn, it was shown that the finite element approximation of the eigenpairs of differential operators, when the elements of the underlying matrices are approximated by numerical quadrature, yield optimal order of convergence when the numerical quadrature satisfies a certain precision requirement. In this note we show that this requirement is indeed sharp for eigenvalue approximation. We also show that the optimal order of convergence for approximate eigenvectors can be obtained, using numerical quadrature with less precision.The author would like to thank Prof. I. Babuka for several helpful discussions. This work was done during the author's visit to the Institute of Physical Sciences and Technology and the Department of Mathematics of University of Maryland, College Park, MD 20742, USA, and was supported in part by the Office of Naval Research under Naval Research Grant N0001490-J-1030  相似文献   

4.
Summary. The paper deals with the finite element analysis of second order elliptic eigenvalue problems when the approximate domains are not subdomains of the original domain and when at the same time numerical integration is used for computing the involved bilinear forms. The considerations are restricted to piecewise linear approximations. The optimum rate of convergence for approximate eigenvalues is obtained provided that a quadrature formula of first degree of precision is used. In the case of a simple exact eigenvalue the optimum rate of convergence for approximate eigenfunctions in the -norm is proved while in the -norm an almost optimum rate of convergence (i.e. near to is achieved. In both cases a quadrature formula of first degree of precision is used. Quadrature formulas with degree of precision equal to zero are also analyzed and in the case when the exact eigenfunctions belong only to the convergence without the rate of convergence is proved. In the case of a multiple exact eigenvalue the approximate eigenfunctions are compard (in contrast to standard considerations) with linear combinations of exact eigenfunctions with coefficients not depending on the mesh parameter . Received September 18, 1993 / Revised version received September 26, 1994  相似文献   

5.
In this paper, we have studied the effect of numerical integration on the finite element method based on piecewise polynomials of degree k, in the context of approximating linear functionals, which are also known as “quantities of interest”. We have obtained the optimal order of convergence, O(h2k){\mathcal{O}(h^{2k})}, of the error in the computed functional, when the integrals in the stiffness matrix and the load vector are computed with a quadrature rule of algebraic precision 2k − 1. However, this result was obtained under an increased regularity assumption on the data, which is more than required to obtain the optimal order of convergence of the energy norm of the error in the finite element solution with quadrature. We have obtained a lower bound of the error in the computed functional for a particular problem, which indicates the necessity of the increased regularity requirement of the data. Numerical experiments have been presented indicating that over-integration may be necessary to accurately approximate the functional, when the data lack the increased regularity.  相似文献   

6.
The behaviour of electromagnetic resonances in cavities is modelled by a Maxwell eigenvalue problem (EVP). In the present work, we rewrite the corresponding variational problem, as it arises with a view to the application of a finite element method, in a mixed formulation. For the modelling of realistic problems the integrals occurring in this mixed formulation often cannot be evaluated exactly. We take into account the error arising from numerical quadrature and show convergence to the approximations using exact integration. Finally, some numerical results are presented.  相似文献   

7.
利用有限元后处理技术在混合网格上重构了线性有限元解,使其梯度具有超收敛性,在此基础上利用Rayleigh商重构特征值,获得了线元特征值的四阶超收敛结果.  相似文献   

8.
Approximation theoretic results are obtained for approximation using continuous piecewise polynomials of degree p on meshes of triangular and quadrilateral elements. Estimates for the rate of convergence in Sobolev spaces , are given. The results are applied to estimate the rate of convergence when the p-version finite element method is used to approximate the -Laplacian. It is shown that the rate of convergence of the p-version is always at least that of the h-version (measured in terms of number of degrees of freedom used). If the solution is very smooth then the p-version attains an exponential rate of convergence. If the solution has certain types of singularity, the rate of convergence of the p-version is twice that of the h-version. The analysis generalises the work of Babuska and others to the case . In addition, the approximation theoretic results find immediate application for some types of spectral and spectral element methods. Received August 2, 1995 / Revised version received January 26, 1998  相似文献   

9.
A special feature of the p-version of the finite element method for solving a differential boundary value problem stated in the form of minimizing a quadratic functional on a certain set is studied. This special feature results in approximate solutions remaining unchanged on finite numbers of increasing finite-dimensional subsets of increasing dimension, in which solutions are sought. Necessary and sufficient conditions for the existence of this feature are found, and the stagnation effect is interpreted for a specially constructed example. For the adaptive p-version of the finite element approach, a modified strategy is proposed that takes this feature into account and thus improves the reliability of the method.  相似文献   

10.
Some three-scale finite element discretization schemes are proposed and analyzed in this paper for a class of elliptic eigenvalue problems on tensor product domains. With these schemes, the solution of an eigenvalue problem on a fine grid may be reduced to the solutions of eigenvalue problems on a relatively coarse grid and some partially mesoscopic grids, together with the solutions of linear algebraic systems on a globally mesoscopic grid and several partially fine grids. It is shown theoretically and numerically that this type of discretization schemes not only significantly reduce the number of degrees of freedom but also produce very accurate approximations. AMS subject classification (2000)  65N15, 65N25, 65N30, 65N50  相似文献   

11.
We introduce a new method for computing eigenvalues of the Maxwell operator with boundary finite elements. On bounded domains with piecewise constant material coefficients, the Maxwell solution for fixed wave number can be represented by boundary integrals, which allows to reduce the eigenvalue problem to a nonlinear problem for determining the wave number along with boundary and interface traces. A Galerkin discretization yields a smooth nonlinear matrix eigenvalue problem that is solved by Newton's method or, alternatively, the contour integral method. Several numerical results including an application to the band structure computation of a photonic crystal illustrate the efficiency of this approach. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

12.
非线性抛物型方程有限元法数值积分的有效性   总被引:1,自引:0,他引:1  
Abstract. The effect of numerical integration in finite element methods applied to a class of nonlinear parabolic equations is considered and some sufficient conditions on the quadrature scheme to ensure that the order of convergence is unaltered in the presence of numerical integration are given. Optimal Lz and H1 estimates for the error and its time derivative are established.  相似文献   

13.
We provide an error analysis of finite element methods for solving time-dependent Maxwell problem using Nedelec and Thomas-Raviart elements. We study the regularity of the solution and develop some new error estimates of Nedelec finite elements. As a result, the optimal -error bound for the semidiscrete scheme is obtained.

  相似文献   


14.
15.
Summary. In some applications, the accuracy of the numerical solution of an elliptic problem needs to be increased only in certain parts of the domain. In this paper, local refinement is introduced for an overlapping additive Schwarz algorithm for the $-version finite element method. Both uniform and variable degree refinements are considered. The resulting algorithm is highly parallel and scalable. In two and three dimensions, we prove an optimal bound for the condition number of the iteration operator under certain hypotheses on the refinement region. This bound is independent of the degree $, the number of subdomains $ and the mesh size $. In the general two dimensional case, we prove an almost optimal bound with polylogarithmic growth in $. Received February 20, 1993 / Revised version received January 20, 1994  相似文献   

16.
We consider finite element operators defined on ``rough' functions in a bounded polyhedron in . Insisting on preserving positivity in the approximations, we discover an intriguing and basic difference between approximating functions which vanish on the boundary of and approximating general functions which do not. We give impossibility results for approximation of general functions to more than first order accuracy at extreme points of . We also give impossibility results about invariance of positive operators on finite element functions. This is in striking contrast to the well-studied case without positivity.

  相似文献   


17.
We consider a system of partial differential equations which models flows through elastic porous media. This system consists of an elasticity equation describing the displacement of an elastic porous matrix and a quasilinear elliptic equation describing the pressure of the saturating fluid (flowing through its pores). In this model, the permeability depends nonlinearly on the dilatation (divergence of the displacement) of the medium. We show that the solution has regularity. We describe the numerical approximation of solutions using a hybrid finite element‐least squares mixed finite element method. Error estimates are obtained through the introduction of an auxiliary linear elasticity equation. Numerical experiments verify the error estimates and validate the proposed poroelasticity model. © 2014 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq 31: 1174–1189, 2015  相似文献   

18.
This article introduces and analyzes a p-version FEM for variational inequalities resulting from obstacle problems for some quasi-linear elliptic partial differential operators. We approximate the solution by controlling the obstacle condition in images of the Gauss–Lobatto points. We show existence and uniqueness for the discrete solution u p from the p-version for the obstacle problem. We prove the convergence of u p towards the solution with respect to the energy norm, and assuming some additional regularity for the solution we derive an a priori error estimate. In numerical experiments the p-version turns out to be superior to the h-version concerning the convergence rate and the number of unknowns needed to achieve a certain exactness of the approximation.  相似文献   

19.
We analyze the error in the p version of the finite element method when the effect of the quadrature error is taken into account. We extend some results by Banerjee and Suri [Math. Comput. 59 , 1–20 (1992)] on the H1-norm error to the case of the error in the L2 norm. We investigate three sources of quadrature error that can occur: the error due to the numerical integration of the right-hand side, that due to nonconstant coefficients, and that due to the presence of mapped elements. Presented are various theoretical and computational examples regarding the sharpness of our results. In addition, we make a note on the use of numerical quadrature in conjunction with p-adaptive procedures and on the necessity of overintegration in the h version with linear elements, when the L2 norm is of interest. © 1993 John Wiley & Sons, Inc.  相似文献   

20.
In this paper we analyze the stream function-vorticity-pressure method for the Stokes eigenvalue problem. Further, we obtain full order convergence rate of the eigenvalue approximations for the Stokes eigenvalue problem based on asymptotic error expansions for two nonconforming finite elements, Q 1rot and EQ 1rot. Using the technique of eigenvalue error expansion, the technique of integral identities and the extrapolation method, we can improve the accuracy of the eigenvalue approximations. This project is supported in part by the National Natural Science Foundation of China (10471103) and is subsidized by the National Basic Research Program of China under the grant 2005CB321701.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号