首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Slowly relaxing longitudinal density fluctuations in an optically perfect sample of bulk poly(n-hexyl methacrylate) (PHMA) have been studied by photon correlation spectroscopy in the temperature range 10–36°C. The glass transition temperature for this sample was measured to be Tg = −3°C by differential scanning calorimetry. The optical purity of the sample was verified by Rayleigh-Brillouin spectroscopy and the Landau-Placzek ratio was observed to be 2.3 at 25°C. Light-scattering relaxation functions were obtained over the time range 10−6-1 s. The shape of the relaxation functions broadened as the temperature was lowered towards the glass transition. Quantitative analysis of the results was carried out using the Kohlrausch-Williams-Watts (KWW) function to obtain average relaxation times, 〈τ〉, and width parameters, β. The width parameter decreased from 0.43 to 0.21 over the temperature interval, as suggested by visual inspection. Average relaxation times shifted with temperature in a manner consistent with previous mechanical studies of the primary glass-rubber relaxation in PHMA. The relaxation functions were also analyzed in terms of a distribution of relaxation rates, G(Γ). The calculated distributions were unimodal at all temperatures. The average relaxation times obtained from G(Γ) were in agreement with the KWW analysis, and the shape of the distribution broadened as the sample was cooled. The rate at which G(Γ) displayed a maximum correlated well with the corresponding frequency of maximum dielectric loss for PHMA. The temperature dependence of these two quantities could be reproduced with an Arrhenius activation energy of 21 Kcal/mol. A consistent picture of the molecular dynamics of PHMA near the glass transition requires a strong secondary relaxation process with a different temperature dependence from the primary glass-rubber relaxation. The present results suggest that the behavior of PHMA is similar to the other poly(alkyl methacrylates). © 1996 John Wiley & Sons, Inc.  相似文献   

2.
We report dielectric relaxation and Rayleigh-Brillouin spectroscopic measurements on the side chain polymer poly(n-hexylmethacrylate), PHMA (Tg = 268 K), exhibiting a broad glass transition region. The dielectric loss curves can be represented by single Havriliak-Negami functions in the temperature range of 260–450 K. The width of the distribution relaxation function is a decreasing function of temperature up to T = 333 K ≊ 1.24 × Tg and remains virtually constant above that temperature. This is interpreted as marking the merging of the α-process with a slow β-relaxation in agreement with the value of the cooperativity length associated with the α-mode. Hence above that temperature, the relaxation times confirm well to an Arrhenius temperature dependence. The hypersonic dispersion deduced from the Brillouin spectra (210–550 K) surprisingly peaks at temperatures near Tg which bears no relation to the main α-relaxation. This structural relaxation is rather associated with the side hexyl group motion showing striking resemblance with the hypersonic dispersion in molecular liquids. It is conceivable that the observed damping in PHMA is dynamically related to the internal plasticization effect of the hexyl group. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Slow relaxing longitudinal density fluctuations in bulk syndiotactic poly (n-butyl methacrylate) [PBMA] were studied by photon correlation spectroscopy as a function of temperature from 70 to 90°C. The shape of the light-scattering relaxation function broadened as the temperature approached the glass transition (Tg = 55°C). The average relaxation time shifted with temperature, consistent with previous studies of PBMA. The relaxation functions were analyzed in terms of a distribution of relaxation rates. The calculated distribution was clearly bimodal and the shape altered with temperature. The higher frequency peak in the distribution corresponds well with previous mechanical and dielectric relaxation studies of the intramolecular relaxation of the acrylate ester side chain. The resolution of the distribution into two modes is due to a well-defined side-chain motion with relaxation strength comparable to the primary glass-rubber relaxation. © 1994 John Wiley & Sons, Inc.  相似文献   

4.
The conductivity of poly(p-phenylene sulfide) (PPS) amorphous samples sandwiched between metallic electrodes has been studied as a function of applied voltage, temperature, and electrode material. The voltage (U) dependence of the currents for electric fields within the range 103–106 V/cm exhibits exp βU1/2 behavior with β = βSchottky below the glass transition temperature (Tg ≊ 90°C), and β = βPoole-Frenkel above Tg. Coordinated temperature measurements of dc currents with different metallic contacts and thermally stimulated currents (TSC) indicate, however, that the conductivity at T < Tg is consistent with the so-called “anomalous” Poole-Frenkel effect rather than the Schottky effect. Consequently, the p-type conductivity in amorphous PPS is proposed to be a bulk-limited process due to ionization of two different types of acceptor centers in the presence of neutral hole traps. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
To tolerate high processing temperature during the fabrication of low-temperature polycrystalline silicon thin-film transistors (LTPS–TFT) in flexible OLED devices, the polyimide (PI) films, which are used as substrate, should have ultra-high glass transition temperature (Tg > 450°C) and ultra-low coefficient of thermal expansion (CTE at 0–5 ppm K−1). In this paper, two novel heterocyclic monomers, namely, N,N'-(xanthone-2,7-diyl)bis(4-aminobenzamide) (p-DAXBA) and N,N'-(xanthone-2,7-diyl)bis(3-aminobenzamide) (m-DAXBA), which contain a xanthone moiety, are prepared and polycondensed with pyromellitic dianhydride (PMDA), respectively. PI films (PIa and PIb) with intrinsic high Tg and low CTE are designed from the perspective of rigid conjugate xanthone structure and hydrogen bonding interaction. It is found that the PIa films prepared by p-DAXBA have better linear structure of molecular chains and show relatively higher Tg and lower CTE. The Tg of PIa-40 is greater than 450°C, and CTE can reach as low as 2.7 ppm K−1, tensile strength of 179 MPa, modulus of 5.67 GPa, indicating potential application prospect as a flexible OLED substrate.  相似文献   

6.
Poly(vinylamine), PVA, complexes with cobalt chloride hexahydrate exhibit a 45 °C enhancement in the glass‐transition temperature per mol % of the d‐block metal cation. Poly(ethylene imine), PEI, complexes with CoCl2(H2O)6 exhibit a 20 °C enhancement in Tg per mol % Co2+. Since the basicities of primary and secondary amines are comparable (i.e., pKb,PVA ≈ 3.34 vs. pKb,PEI ≈ 3.27) and the rates at which each polymeric ligand displaces waters of hydration in the coordination sphere of Co2+ are similar, transition metal compatibilization is operative in blends of both polymers with CoCl2(H2O)6. These two polymers are immiscible in the absence of the inorganic component. Infrared spectroscopy suggests that nitrogen lone pairs in PVA and PEI coordinate to Co2+. The stress–strain response of a 75/25 blend of PVA and PEI with 2 mol % Co2+ reveals a decrease in elastic modulus from 4.4 × 109 N/m2 to 5.7 × 107 N/m2, a decrease in fracture stress from 3.7 × 107 N/m2 to 2.0 × 106 N/m2, and an increase in ultimate strain from 1.3 to 12% relative to the 75/25 immiscible polymer–polymer blend. A plausible explanation for this effect is based on the fact that cobalt chloride hexahydrate compatibilizes both polymers by forming a coordination bridge between nitrogen lone pairs in dissimilar chains. Hence, poly(ethylene imine), which is very weak with a Tg near −40 °C, is integrated into a homogeneous structure with poly(vinylamine) and the mechanical properties of the individual polymers are averaged in the compatibilized ternary complex. © 2000 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 38: 552–561, 2000  相似文献   

7.
The present article considers the coil‐to‐globule transition behavior of atactic and syndiotactic poly(methyl methacrylates), (PMMA) in their theta solvent, n‐butyl chloride (nBuCl). Changes in Rh in these polymers with temperature in dilute theta solutions were investigated by dynamic light scattering. The hydrodynamic size of atactic PMMA (a‐PMMA‐1) in nBuCl (Mw: 2.55 × 106 g/mol) decreases to 61% of that in the unperturbed state at 13.0°C. Atactic PMMA (a‐PMMA‐2) with higher molecular weight (Mw: 3.3 × 106 g/mol) shows higher contraction in the same theta solvent (αη = Rh(T)/Rh (θ) = 0.44) at a lower temperature, 7.25°C. Although syndiotactic PMMA (s‐PMMA) has lower molecular weight than that of atactic samples (Mw: 1.2 × 106), a comparable chain collapse was observed (αη = 0.63) at 9.0°C. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 2253–2260, 1999  相似文献   

8.
New thermally stimulated depolarization currents (TSDC) results on LLD polyethylene functionalized with diethylmaleate polar groups are precisely computer fitted with the direct signal analysis technique. It is shown that the TSDC spectrum consists, with increasing temperatures, of a sub-γ peak, a sharp γ peak, and a β and an α relaxation. The first peak is analyzed in terms of Arrhenius relaxation times, whereas the γ and β transitions could only be fitted by using Vogel-Fulcher temperature dependence for the relaxation times. The best value for To obtained from both fittings is 69.7 K. This is a quantitative proof for the identification of the γ transition as one of the dielectric manifestations of the glass-rubber transition for polyethylenes, Tg = 136.5 K, which has been discussed extensively in the literature. The β relaxation, Tgβ = 237 K, has also the expected characteristic of a glass transition; the existence of two Tgs in polyethylene could explain our results. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
The full range of relaxation processes present in optically pure poly‐(n‐hexyl methacrylate) (PHMA) was studied using Rayleigh–Brillouin and photon correlation spectroscopy (PCS). Brillouin shifts, linewidths, and Landau–Placzek ratios (LPR) were measured over the temperature range from ?11 to 21 °C. The Brillouin splitting and linewidth were consistent with previous studies of PHMA, but the LPR was much lower, indicating that the scattered light primarily comes from intrinsic density fluctuations. Relaxation functions of the same PHMA sample were measured using PCS over the temperature range 0.5–52.5 °C. The average relaxation times calculated from a Williams–Watts fit follow a VFT temperature dependence, with the stretching parameter β decreasing with decreasing temperature. The distribution of relaxation times reveals a merging of the α and β‐relaxations over this temperature range, and the temperature dependent width confirms that there are at least two processes with separate temperature dependences. Furthermore, there appears a process at short times in the correlation function window at low temperatures. This upturn at the fastest relaxation times is attributed to the γ‐relaxation present in higher order methacrylate polymers. The effect of the γ‐relaxation is discussed in terms of the dynamic behavior over 12 decades in time. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1504–1519, 2005  相似文献   

10.
The physical aging process of 4,4′-diaminodiphenylsulfone (DDS) cured diglycidyl ether bisphenol-A (DGEBA) blended with poly(ether sulfone) (PES) was studied by differential scanning calorimetry (DSC) at four aging temperatures between Tg-50°C and Tg-10°C. At aging temperatures between Tg-50 and Tg-30°C, the experimental results of epoxy resin blended with 20 wt% of PES showed two enthalpy relaxation processes. One relaxation process was due to the physical aging of PES, the other relaxation process was due to the physical aging of epoxy resin. The distribution of enthalpy relaxation process due to physical aging of epoxy resin in the blend was broader and the characteristic relaxation time shorter than those of pure epoxy resin at the above aging temperatures (between Tg-50 and Tg-30°C). At an aging temperature between Tg-30 and Tg-10°C, only one enthalpy relaxation process was found for the epoxy resin blended with PES, the relaxation process was similar to that of pure epoxy resin. The enthalpy relaxation process due to the physical aging of PES in the epoxy matrix was similar to that of pure PES at aging temperatures between Tg-50 and Tg-10°C. © 1997 John Wiley & Sons, Inc.  相似文献   

11.
Molecular relaxations in 47-wt % polypropylene oxide of molecular weight 4000 in toluene as diluent have been studied by dielectric permittivity and loss measurements from 77 to 320 K, in the frequency range 1 Hz to 2 × 105 Hz. One relaxation process (β process) is observed in the glassy state below Tg (= 148 K), and two processes are observed in the supercooled liquid at T > Tg. Relative to the amplitude of the fast relaxation process (i.e., the local segmental motions of the polymer chain), the amplitude of the slow process is increased and that of the β process decreased on dilution of the pure polymer. The β process has an Arrhenius energy of 17 kJ mol?1. The rates of the two relaxations at T > Tg follow the Vogel–Fulcher–Tamman equation and seem to merge on cooling the liquid towards Tg. The relative temperatures at which the three relaxation processes occur at the rate of 1 kHz remain largely unaffected on dilution. The increase in static permittivity of the solution on cooling is more than anticipated from the temperature effects alone. It is suggested that the increase is due to the enhanced short-range orientational correlation of the dipoles, which may involve H bonding.  相似文献   

12.
Bulk poly(ethylene terephthalate) PET has been reorganized both morphologically and conformationally by processing from its inclusion complex (IC) formed with γ‐cyclodextrin (CD). In the narrow channels of its γ‐CD‐IC crystals the included guest PET chains are isolated from neighboring PET chains and the ethylene glycol (EG) units adopt the highly extended g±tg? kink conformations, whose cross‐sectional diameters are ~80% of the diameter of the fully extended, all‐trans crystalline PET conformer, though they are nearly (~95%) as extended. When the highly extended, unentangled guest PET chains are coalesced from their γ‐CD‐IC crystals by exposure to hot water, host γ‐CDs are removed and the PET chains are presumably consolidated into a bulk sample with a morphology and constituent chain conformations not normally found in PET samples solidified from their randomly coiling, possibly entangled, disordered melts and solutions. Observations by polarized light and atomic force microscopies provide visual evidence for widely different semicrystalline morphologies developed in coalesced and as‐received PETs when crystallized from their melts, with possibly chain extended, small crystals and spherulitic, chain‐folded, large crystals, respectively. DSC observations reveal that coalesced PET is rapidly crystallizable from the melt, while as‐received PET is slow to crystallize and is easily quenched into a totally amorphous sample. Analyses of 13C‐NMR data strongly indicate that the PET chains in the noncrystalline regions of the coalesced sample remain predominantly in the highly extended kink conformations, with g±tg? EG units, which are required by their inclusion into PET‐γ‐CD‐IC crystals, while the predominantly amorphous PET chains in the as‐received sample have high concentrations of gauche± ? CH2? CH2? and trans ? O? CH2? ,? CH2? O? EG bond conformations. 13C‐NMR T1(13C) and T(1H) relaxation studies show no evidence of a glass transition for coalesced PET, while the as‐received sample shows abrupt changes in both the MHz [T1(13C)] and kHz [T(1H)] motions at TTg. Preliminary observations of differences in their macroscopic properties are attributed to the very different morphologies and conformations of the constituent chains in these PET samples. Apparently the kink conformers in the noncrystalline regions of coalesced PET are at least partially retained for extended periods even in the melt and are rapidly crystallized upon cooling. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 386–394, 2004  相似文献   

13.
Volume flow of poly(methyl methacrylate) (PMMA) (M?n = 43,000 and Tg = 384) has been measured in an Instron Capillary Rheometer. Elastic modulus of the longitudinal wave, longitudinal volume viscosity, initial longitudinal volume viscosity, and retardation times are described at temperatures above Tg (418–483K) and compression rates of about 1.00–200.00 × 105 s?1. An initial increase followed by a decrease in longitudinal volume viscosity has been observed as the compression rate increases and the volume deformation decreases, this last behavior being at the lowest values of the compression rate (6.0 and 30.0 × 10?5 s?1) a typical nonequilibrium one. ηL also increases with increasing temperature (Tg decreases 0.18°C/MPa), and volume flow activation energy decreases as the volume deformation increases.  相似文献   

14.
Nanoscale poly(methyl methacrylate) (PMMA) particles were prepared by modified microemulsion polymerization. Different from particles made by traditional microemulsion polymerization, the particles prepared by modified microemulsion polymerization were multichain systems. PMMA samples, whether prepared by the traditional procedure or the modified procedure, had glass-transition temperatures (Tg's) greater than 120 °C and were rich in syndiotactic content (55–61% rr). After the samples were dissolved in CHCl3, there were decreases in the Tg values for the polymers prepared by the traditional procedure and those prepared by the modified process. However, a more evident Tg decrease was observed in the former than in the latter; still, for both, Tg was greater than 120 °C. Polarizing optical microscopy and wide-angle X-ray diffraction indicated that some ordered regions formed in the particles prepared by modified microemulsion polymerization. The addition of a chain-transfer agent resulted in a decrease in both the syndiotacticity and Tg through decreasing polymer molecular weight. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 733–741, 2004  相似文献   

15.
A series of novel optically active poly(ester‐imide)s (ter‐PEIs) with high glass transition temperature (Tg), good thermal stability, and solubility were successfully designed and synthesized by direct polycondensation reactions, using p‐hydroxybenzoic acid (PHB), 4,4’‐dihydroxybenzophenone, and a chiral diacid, N,N'‐(pyromellitoyl)‐bis‐L‐phenylalanine diacid as monomers. The resulting terpolymers were characterized by1H‐NMR, FTIR, element analysis, thermogravimetric analysis, different scanning calorimeter and wide‐angle x‐ray diffraction, etc. The ter‐PEIs are amorphous polymers with good heat resistance and high Tgs. They are soluble in many common polar organic solvents and show optically rotation property. The specific rotation values of the ter‐PEIs increase with the molar ratio of the chiral diacid, and the rigid PHB monomer is beneficial to increase the Tgs of the polymers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

16.
The miscibility of poly(hydroxyether of bisphenol A) (phenoxy) and poly(N-vinyl pyrrolidone) (PVP) was investigated by differential scanning calorimetry (DSC) and high-resolution solid-state nuclear magnetic resonance (NMR) techniques. The DSC studies showed that the phenoxy/PVP blends have a single, composition-dependent glass transition temperature (Tg). The S-shaped Tg-composition curve of the phenoxy/PVP blends was reported, which is indicative of the strong intermolecular hydrogen-bonding interactions. To examine the miscibility of the system at molecular level, high-resolution solid-state 13C nuclear magnetic resonance (NMR) technique was employed. Upon adding phenoxy to system, the chemical shift of carbonyl carbon resonance of PVP was observed to shift downfield by 1.6 ppm in the 13C cross-polarization (CP)/magic angle spinning (MAS) together with the high-power dipolar decoupling (DD) spectra when the concentration of phenoxy is 90 wt %. The observation was responsible for the formation of intermolecular hydrogen bonding. The proton spin-lattice relaxation time T1(H) and the proton spin-lattice relaxation time in the rotating frame T(H) were measured as a function of the blend composition. The T1(H) result was in good agreement with the thermal analysis, i.e., the blends are completely homogeneous on the scale of 20 ∼ 30 nm. The six results of T(H) further indicated that the blends were homogeneous on the scale of 40 ∼ 50Å. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2291–2300, 1998  相似文献   

17.
Molecular relaxation behavior in terms of the α, β, and γ transitions of miscible PS/PPO blends has been studied by means of DMTA and preliminary work has been carried out using DSC. From DSC and DMTA (by tan δ), the observed α relaxation (Tα or Tg) of PS, PPO, and the blends, which are intermediate between the constituents, are in good agreement with earlier reports by others. In addition, the β transition (Tβ) of PS at 0.03 Hz and 1 Hz is observed at −30 and 20°C, respectively, while the γ relaxation (Tγ) is not observed at either frequency. The Tβ of PPO is 30°C at 0.03 Hz and is not observed at 1 Hz, while the Tγ is −85°C at 0.03 Hz and −70°C at 1 Hz. On the other hand, blend composition-independent β or γ relaxation observed in the blends may be a consequence of the absence of intra- or intermolecular interaction between the constituents at low temperature. Thus it is suggested that at low temperature, the β relaxation of PS be influenced solely by the local motion of the phenylene ring, and that the β or γ relaxation of PPO be predominated by the local cooperative motions of several monomer units or the rotational motion of the methyl group in PPO. © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1981–1986, 1998  相似文献   

18.
Summary: The sol‐gel transition of one thermoreversible gelling mixture made of xanthan gum and locust bean gum has been studied by using in situ time‐resolved dynamic light scattering (DLS) and measuring the spin‐lattice relaxation time T1 of several protons. A critical dynamical behavior was observed near the sol‐gel transition, which is characterized by the presence of power‐law spectra over four decades of the delay time in the time‐intensity correlation function g2(t)−1 ∼ t−μ at 48 °C. The increase in T1 with increasing temperature becomes steeper at 50 °C indicating a significant change in the local mobility of one anomeric proton of the xanthan side chain and the anomeric protons of the locust bean gum mannose backbone.

Temperature dependence of the spin‐lattice relaxation time T1 for the equatorial anomeric proton of the mannopyranosic unit located next to the main chain of the xanthan.  相似文献   


19.
The development of lamellar morphology in poly(oxymethylene) (POM) and its miscible blends was studied by synchrotron time-resolved small-angle X-ray scattering (SAXS), during primary and secondary crystallization at temperatures near 150°C. The blends contained two different diluents: poly(vinyl 4-hydroxy styrene) [common name poly(vinyl phenol), (PVP)], which had a high glass temperature (Tg = 150°C), and styrene-co-hydroxy styrene oligomer (PhSO), which had a low glass temperature (Tg = −37°C). The SAXS data were analyzed by correlation function analysis to extract several lamellar parameters: long period (L), lamellar crystalline thickness (lc), amorphous layer thickness (la), and invariant (Q). The variation in Q defined the region where spherulites quickly grew and filled the entire space, and was referred to as the primary crystallization dominant regime. A rapid drop in L and lc was observed at early times, and this can be explained by defective lamellar stacks filling in space between primary stacks, as secondary crystals form during the nominal primary crystallization dominant regime. Lamellar thickening with time in the long-time secondary crystallization region was observed in neat POM and the blend with 10 % low Tg diluent, while this process was inhibited with the high Tg diluent due to the higher Tg of the interlamellar species. A decrease in la at long times confirmed the lamellar thickening. We refer to the lamellar thickening process as a type of secondary crystallization. Interlamellar inclusion or trapping was detected to different degrees with the high Tg diluent, while exclusion was found for the low Tg diluent. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 3115–3122, 1999  相似文献   

20.
A series of narrowly distributed poly(N‐isopropylacrylamide) (PNIPAM) with molecular weight ranging from 8 × 104 to 2.3 × 107 g/mol were prepared by a combination of free radical polymerization and fractional precipitation. An ultrasensitive differential scanning calorimetry was used to study the effect of molecular weight on the thermal volume transition of these PNIPAM samples. The specific heat peak of the transition temperature (Tp,0) was obtained by extrapolation to zero heating rate (HR) because of the linear dependence of the transition temperature (Tp) on the HR. The relation between Tp,0 and the degree of polymerization (N) was investigated. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1388–1393, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号