首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Synthesis of Diastereo- and Enantioselectively Deuterated β,ε-, β,β-, β,γ- and γ,γ-Carotenes We describe the synthesis of (1′R, 6′S)-[16′, 16′, 16′-2H3]-β, εcarotene, (1R, 1′R)-[16, 16, 16, 16′, 16′, 16′-2H6]-β, β-carotene, (1′R, 6′S)-[16′, 16′, 16′-2H3]-γ, γ-carotene and (1R, 1′R, 6S, 6′S)-[16, 16, 16, 16′, 16′, 16′-2H6]-γ, γ-carotene by a multistep degradation of (4R, 5S, 10S)-[18, 18, 18-2H3]-didehydroabietane to optically active deuterated β-, ε- and γ-C11-endgroups and subsequent building up according to schemes \documentclass{article}\pagestyle{empty}\begin{document}${\rm C}_{11} \to {\rm C}_{14}^{C_{\mathop {26}\limits_ \to }} \to {\rm C}_{40} $\end{document} and C11 → C14; C14+C12+C14→C40. NMR.- and chiroptical data allow the identification of the geminal methyl groups in all these compounds. The optical activity of all-(E)-[2H6]-β,β-carotene, which is solely due to the isotopically different substituent not directly attached to the chiral centres, is demonstrated by a significant CD.-effect at low temperature. Therefore, if an enzymatic cyclization of [17, 17, 17, 17′, 17′, 17′-2H6]lycopine can be achieved, the steric course of the cyclization step would be derivable from NMR.- and CD.-spectra with very small samples of the isolated cyclic carotenes. A general scheme for the possible course of the cyclization steps is presented.  相似文献   

2.
Pyrrolosteroids such as 17β-hydroxy-1′-H-5α-androst-2-eno[3,2-b]pyrrole ( 1 ) and the novel 17β-hydroxy-1′-H-5α-androst-3-eno[3,4-b]pyrrole ( 12 ) can be synthesized from the corresponding O-(2-hydroxyethyl)ketoxime precursors. In the case of 1 , yields compare favourably with previously reported literature methods.  相似文献   

3.
The dinucleoside phosphate ΠdpΠd ( 4 ) was synthesized from the monomers 1-(5′-O-monomethoxytrityl - 2′ - deoxy - β - D - ribofuranosyl) - 2 (1 H) - pyridone ((MeOTr) Πd, 2 ) and 1-(5′-O-phosphoryl-3′-O-acetyl-2′-deoxy-β-D -ribofuranosyl)-(1H)-pyridone (pΠd(Ac), 3 ). Its 6.4% hyperchromicity and an analysis of the 1H-NMR. spectra indicate that the conformation and the base-base interactions in 4 are similar to those in natural pyrimidine dinucleoside phosphates.  相似文献   

4.
An efficient synthesis of the unknown 2′-deoxy-D-threo-tubercidin ( 1b ) and 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) as well as of the related nucleosides 9a, b and 10b is described. Reaction of 4-chloro-7-(2-deoxy-β-D-erythro-pentofuranosyl)-7H-pyrrolo[2,3-d]pyrimidine ( 5 ) with (tert-butyl)diphenylsilyl chloride yielded 6 which gave the 3′-keto nucleoside 7 upon oxidation at C(3′). Stereoselective NaBH4 reduction (→ 8 ) followed by deprotection with Bu4NF(→ 9a )and nucleophilic displacement at C(6) afforded 1b as well as 7-deaza-2′-deoxy-D-threo-inosine ( 9b ). Mesylation of 4-chloro-7-{2-deoxy-5-O-[(tert-butyl)diphenylsilyl]-β-D-threo-pentofuranosyl}-7H-pyrrolo[2,3-d]-pyrimidine ( 8 ), treatment with Bu4NF (→ 12a ) and 4-halogene displacement gave 2′, 3′-didehydro-2′, 3′-dideoxy-tubercidin ( 3 ) as well as 2′, 3′-didehydro-2′, 3′-dideoxy-7-deazainosne ( 12c ). On the other hand, 2′, 3′-dideoxy-3′-fluorotubercidin ( 2 ) resulted from 8 by treatment with diethylamino sulfurtrifluoride (→ 10a ), subsequent 5′-de-protection with Bu4NF (→ 10b ), and Cl/NH2 displacement. 1H-NOE difference spectroscopy in combination with force-field calculations on the sugar-modified tubercidin derivatives 1b , 2 , and 3 revealed a transition of the sugar puckering from the 3′T2′ conformation for 1b via a planar furanose ring for 3 to the usual 2′T3′ conformation for 2.  相似文献   

5.
6.
The synthesis of 6-amino-1-(2′,3′-dideoxy-β-D -glycero-pentofuranosyl)-1H-pyrazolo[3,4-d]pyrimidin-4(5H)-one ( =8-aza-7-deaza-2′,3′-dideoxyguanosine; 1 ) from its 2′-deoxyribofuranoside 5a by a five-step deoxygenation route is described. The precursor of 5a, 3a , was prepared by solid-liquid phase-transfer glyscosylation which gave higher yields (57%) than the liquid-liquid method. Ammonoloysis of 3b furnished the diamino nucleoside 3c . Compound 1 was less acid sensitive at the N-glycosydic bond than 2′,3′-dideoxyguanosine ( 2 ).  相似文献   

7.
A simple synthesis of 5-deoxy-L -[5-2H1]arabinose was performed to obtain L -[3′-2H1]biopterin. The reduced form of this model substance is needed to investigate the pathway of 7-substituted pterins in patients with primapterinuria.  相似文献   

8.
A number of 2,4-disubstituted pyrrolo[3,2-d]pyrimidine N-5 nucleosides were prepared by the direct glycosylation of the sodium salt of 2,4-dichloro-5H-pyrrolo[3,2-d]pyrimidine (3) using 1-chloro-2-deoxy-3,5-di-O-(p-toluoyl)-α-D -erythropentofuranose (1) and 1-chloro-2,3,5-tri-O-benzyl-α-D-arabinofuranose (11) . The resulting N-5 glycosides, 2,4-dichloro-5-(2-deoxy-3,5-di-O-(p-toluoyl) -β-D-erythropentofuranosyl)-5H-pyrrolo-[3,2-d]pyrimidine (4) and 2,4-dichloro-5-(2,3,5-tri-O-benzyl-β-D-arabinofuranosyl-5H -pyrrolo [3,2-d)pyrimidine (12) , served as versatile key intermediates from which the N-7 glycosyl analogs of the naturally occurring purine nucleosides adenosine, inosine and guanosine were synthesized. Thus, treatment of 4 with methanolic ammonia followed by dehalogenation provided the adenosine analog, 4-amino-5-(2-deoxyerythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidine (6) . Reaction of 4 with sodium hydroxide followed by dehalogenation afforded the inosine analog, 5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (9) . Treatment of 4 with sodium hydroxide followed by methanolic ammonia gave the guanosine analog, 2-amino-5-(2-deoxy-β-D-erythropentofuranosyl) -5H-pyrrolo[3,2-d]pyrimidin-4(3H)-one (10) . The preparation of the same analogs in the β-D-arabinonucleoside series was achieved by the same general procedures as those employed for the corresponding 2′-deoxy-β-D-ribonucleoside analogs except that, in all but one case, debenzylation of the sugar protecting groups was accomplished with cyclohexene-palladium hydroxide on carbon, providing 4-amino-5-β-D-arabinofuranosyl-5H-pyrrolo [3,2-d]pyrimidin-4(3H)-one (18) . Structural characterization of the 2′-deoxyribonucleoside analogs was based on uv and proton nmr while that of the arabinonucleosides was confirmed by single-crystal X-ray analysis of 15a . The stereospecific attachment of the 2-deoxy-β-D-ribofuranosyl and β-D-arabinofuranosyl moieties appears to be due to a Walden inversion at the C1 carbon by the anionic heterocyclic nitrogen (SN2 mechanism).  相似文献   

9.
An auto oxidation-rearrangement product 4 was isolated from a high dilution reaction of ninhydrin with 3,4,5-trimethoxyaniline in water. A general synthesis of this compound and its derivatives 4–6 was devised by oxidation of tetrahydroindeno[1,2-b]indol-10-ones 1–3 with sodium periodate to give isoindolo[2,1-a]-indole-6,11-diones 4–6 in good yield. Compounds 4–6 can be easily transformed into spiro[1H-isobenzofuran-1,2′-2H-indole]-3,3′-diones 8–10 , spiro[2H-indole-2,1′-1H-isoindole]-3,3′-diones 11–13 and isoindole[1,2-a:2′,1′-b]pyrimidine-5,15-diones 15, 16 in high yields. Analogous reactions were performed on 3-amino-5a, 10a-dihydroxybenzo[b]indeno[2,1-d]furan-10-one ( 17 ) to give a dibenzoxocintrione 18 , spiro-[benzofuran-2,1′-isobenzofuran]-3,3′-dione 19 and an isoindol-1-one 20 .  相似文献   

10.
Halochromic Molecules. Substituted 6,11-Dihydrospiro[[1]benzopyrano[4,3-b]indol-6,9′-9′H-xanthene]-2′,6′-diamines and Their Aza Analogues: New Chromogenes for Black Images . We have synthesized a series of substituted 6,11-dihydrospiro[[1]benzopyrano[4,3-b]indo1-6,9′-9′H-xanthene]-2′,6′-diamines and their respective aza analogues. These compounds develop a black colour in acidic media. The assumed structures of the analytically pure starting and final products are consistant with the fragmentations in the MS and are also supported by FT 1H-NMR. The UV/VIS spectra in buffered MeOH/H2O solutions were measured. From the ?pH* curves, we determined the pK* values. The title compounds can be used in so-called pressure-sensitive copying systems.  相似文献   

11.
Re-isolation of Pseudomonas tabaci strain NCPPB 2730 from its host, the tobacco plant, led to an activation of the bacteria in order to produce the β-lactam dipeptide tabtoxin (Wildfire toxin, 1 ). Incorporation of several 14C-labelled amino acids as well as L -[methyl-13C]methionine, L -[1,2-13C2]- and L -[3,4-13C2]aspartate, rac -[1,2-13C2]glycerol, and [1,2-13C2]acetate into isotabtoxion ( 2 ) demonstrated that the building blocks of tabtoxin ( 1 ) are L -threonine, L -aspartate, the Me group of L -methionine and a C2-unit derived from the C3-pool (Fig. 3). The Me group of L -methionine provides the carbonyl C-atom of the β-lactam moiety. These findings represent a novel pathway in β-lactam biosynthesis. Mechanistic aspects with respect to the β-lactam ring formation are discussed. A biradical 16 is proposed as an intermediate during the cyclization of a N-formyl-α-amino ketone 15 .  相似文献   

12.
The opening of the pyranone ring in 2H-naphtho[1,2-b]pyran-2-one derivative (1) and 3H-naphtho[2,1-b]-pyran-3-one derivatives 8 and 20 with nucleophiles afforded 3-(naphthyl-1)- and 3-(naphthyl-2)propenoates (substituted β-naphthyl-α,β-dehydro-α-amino acid derivatives) 7, 13, 14, 15, 24 , and 35 .  相似文献   

13.
The synthesis of [1,5′-3H2]naltrindole ( 9 ) with labels at both the morphine skeleton and the indole moiety was carried out by catalytic tritiodehalogenation of 1,5′-dibromonaltrindole ( 8 ) resulting in a specific activity of 46.1 Ci/mmol (1705 GBq/mmol). The brominated precursor was prepared by the Fischer indole synthesis starting from 1-bromonaltrexone ( 7 ) and (4-bromophenyl)hydrazine.  相似文献   

14.
New 1-deazapurine nucleosides were synthesized by coupling 2,6-dichloro-1-deaza-9H-purine (=5,7-dichloro-3H-imidazo[4,5-b]pyridine) with a 3-deoxyribose derivative by the acid-catalyzed fusion method. The condensation reaction gave an anomeric mixture of the N9-β-D - and N9-α-D -3′-deoxynucleosides, which were treated with methanolic ammonia at room temperature to obtain the deprotected derivatives. Reaction of the β-D -anomer with different amines gave 2-chloro-N6-substituted nucleosides, which were dechlorinated to give the corresponding 3′-deoxy-1-deazaadenosines. Biological studies on adenosine deaminase from calf intestine showed that the new compounds are inhibitors of the enzyme, the 3′-deoxy-1-deazaadenosine being the most potent one with a Ki of 2.6 μM .  相似文献   

15.
In the title regioisomeric nucleosides, alternatively called 1‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐1H‐pyrazolo­[3,4‐d]­pyrimidine, C10H12N4O3, (II), and 2‐(2‐deoxy‐β‐d ‐erythro‐furan­osyl)‐2H‐pyrazolo­[3,4‐d]pyrimidine, C10H12N4O3, (III), the conformations of the gly­cosyl­ic bonds are anti [?100.4 (2)° for (II) and 15.0 (2)° for (III)]. Both nucleosides adopt an S‐type sugar pucker, which is C2′‐endo‐C3′‐exo (2T3) for (II) and 3′‐exo (between 3E and 4T3) for (III).  相似文献   

16.
Solid-liquid phase-transfer glycosylation (KOH, tris[2-(2-methoxyethoxy)ethye]amine ( = TDA-1), MeCN) of pyrrolo[2,3-d]pyrimidines such as 3a and 3b with an equimolar amount of 5-O-[(1,1 -dimethylethyl)dimethylsilyl]-2,3-O-(1-methylethylidene)-α-D -ribofuranosyl chloride (1) [6] gave the protected β-D -nucleosides 4a and 4b , respectively, stereoselectively (Scheme). The β-D -anomer 2 [6] yielded the corresponding α-D -nucleosides 5a and 5b with traces of the β-D -compounds. The 6-substituted 7-deazapurine nucleosides 6a , 7a , and 8 were converted into tubercidin (10) or its α-D -anomer (11) . Spin-lattice relaxation measurements of anomeric ribonucleosides revealed that T1 values of H? C(8) in the α-D -series are significantly increased compared to H? C(8) in the β-D -series while the opposite is true for T1 of H? C(1′). 15N-NMR data of 6-substituted 7-deazapurine D -ribofuranosides were assigned and compared with those of 2′-deoxy compounds. Furthermore, it was shown that 7-deaza-2′deoxyadenosine ( = 2′-deoxytubercidin; 12 ) is protonated at N(1), whereas the protonation site of 7-deaza-2′-deoxyguanosine ( 20 ) is N(3).  相似文献   

17.
Cycloaddition of dichloroketone to N,N-disubstituted (E)-4-aminomethylene-3,4-dihydro-1-benzoxepin-5(2H)-ones gave N,N-disubstituted 4-amino-3,3-dichloro-3,4,5,6-tetrahydro-2H-pyrano[3,2-d]-1-benzoxepin-2-ones II, which are derivatives of the new heterocyclic system 2H-pyrano[3,2-d]-1-benzoxepin. Dehydrochlorination with triethylamine of II afforded N,N-disubstituted 4-amino-3-chloro-5,6-dihydro-2H-pyrano-[3,2-d]-1-benzoxepin-2-ones III in good to moderate yields. In the triethylamine treatment of IIh (NR2 = diphenylamino), 3-chloro-5,6-dihydro-2H-pyrano[3,2-d]-1-benzoxepin-2-one was isolated in low yield near to IIIh, whereas IIc (NR2 = diisopropylamino) gave in low yield 4-diisopropylamino-5,6-dihydro-2H-pyrano(3,2-d)-1-benzoxepin-2-one.  相似文献   

18.
2-(1′-cis,3′-cis-)- and 2-(1′-cis,3′-trans-Penta-1′,3′-dienyl)-phenol (cis, cis- 4 and cis, trans- 4 , cf. scheme 1) rearrange thermally at 85–110° via [1,7 a] hydrogen shifts to yield the o-quinomethide 2 (R ? CH3) which rapidly cyclises to give 2-ethyl-2H-chromene ( 7 ). The trans formation of cis, cis- and cis, trans- 4 into 7 is accompanied by a thermal cis, trans isomerisation of the 3′ double bond in 4. The isomerisation indicates that [1,7 a] hydrogen shifts in 2 compete with the electrocyclic ring closure of 2 . The isomeric phenols, trans, trans- and trans, cis- 4 , are stable at 85–110° but at 190° rearrange also to form 7 . This rearrangement is induced by a thermal cis, trans isomerisation of the 1′ double bond which occurs via [1, 5s] hydrogen shifts. Deuterium labelling experiments show that the chromene 7 is in equilibrium with the o-quinomethide 2 (R ? CH3), at 210°. Thus, when 2-benzyl-2H-chromene ( 9 ) or 2-(1′-trans,3′-trans,-4′-phenyl-buta1′,3′-dienyl)-phenol (trans, trans- 6 ) is heated in diglyme solution at >200°, an equilibrium mixture of both compounds (~ 55% 9 and 45% 6 ) is obtained.  相似文献   

19.
Separation and Characterization of the cis-Isomers of β,β-Carotene A stable HPLC. system is described allowing the excellent separation of 11 different cis-isomers of β,β-carotene from the all-trans compound. The system is applied to the analysis of cis/trans mixtures obtained from plant extracts and by photoisomerization of the all-trans isomer. Al2O3 is used as the stationary phase while hexane with controlled H2O content is utilized as the mobile phase. With the aid of the optimum conditions 8 sufficiently stable cis isomers were isolated and their structures shown to be the 9-, 13- and 15-cis, the 9,9′-, 9, 13-, 9, 13′- and 13,13′-di-cis and, tentatively, the 9,13,13′-tri-cis β,β-carotenes by application of 270-MHz-FT.-1H-NMR. spectroscopy.  相似文献   

20.
Incubation of deuteriated precursors in cultures of Flavobacterium produced specifically deuteriated carotenoids. Analysis of these led to several conclusions: i) Lycopene is a direct precursor of β,β‐carotene. ii) Its terminal Me groups retain their integrity during cyclization: there is a stereospecific folding of the 1,5‐diene. The Me(16,16′) groups of lycopene become the Me(16,16′) of β,β‐carotene. Consequently, the folding must follow the C2(E,E) mode. iii) Incorporation of deuterium was sufficiently extensive to permit CD measurements on the isolated β,β‐carotene, allowing its centers of chirality to be assigned as (1S,1′S). iv) The same chirality resulted from incorporation of [2H3]mevalonate into zeaxanthin. The syntheses of specifically deuteriated [2H3]GPP, [2H3]FPP, and [2H3]GG are described.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号