首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 54 毫秒
1.
The methane negative-ion chemical ionization (NCI) mass spectrum of chlorprothixene shows an unusual MH? ion. This ion can be accounted for by electron capture followed by H˙ transfer from the reagent gas. The most probable site of electron attachment was concluded to be related to the sulfur atom of the thioxanthene ring based on the observation of analogous ions for structurally related compounds, all containing a heterocyclic sulfur. The MH? ion observed with methane as the reagent gas was shifted to MD? when tetradeuteromethane was used in place of methane. The ratio of [M ? H]? to MH? did not change with emission current suggesting that the process is independent of the radical concentration in the CI plasma. Consistent with this observation is the lack of CH3˙ or C2H5˙ adduct ions in the NCI mass spectrum and the fact that gold-plating the ion source did not decrease the proportion of MH?. Also, this mechanism is consistent with thermochemical considerations of reactions of a phenyl radical with various alkanes and observations of ions formed by methane NCI from model compounds. Therefore, unlike other MH? ions observed in methane NCI mass spectra, the mechanism of formation does not appear to involve a hydrogen radical addition followed by electron capture.  相似文献   

2.
Nitric oxide chemical ionization mass spectra of substituted benzenes obtained with the Townsend discharge technique were studied. There were four kinds of base peaks in the mass spectra, i.e. [M + NO]+˙, M+˙, [M ? H]+ and [M ? OR]+ (R = H, CH3). The formation of the specific ion [M + NO]+˙ was highly dependent on the kind of substituent, and it was produced more abundantly in the case of substitutions involving electron-accepting groups. The measure of [M + NO]+˙ production was evaluated from the value of the ratio [M + NO]+˙/M+˙. In mono-substitutions, it was clarified that the ratios of [M + NO]+˙/M +˙ were correlated with the Hammett substituent constant s?p or the electrophilic substituent constant s?p+. Monosubstitutions (C6H5R) and toluene substitutions (CH3C6H4R) could be classified into six groups in terms of base peak species, [M + NO]+˙/M+˙ ratios and substituents. In disubstitutions, the mass spectral patterns were governed by the combination of substituents. Mass spectral distinctions among ortho, meta and para isomers could be made in many cases.  相似文献   

3.
The collision-induced dissociation mass-analysed ion kinetic energy (CID MIKE) spectra (electron impact and chemical ionization) of five α-diazo-ω-arylsulphonylaminoalkan-2-ones and corresponding N-arylsulphonylazetidin-3-ones and N-arylsulphonylpyrrolidin-3-ones were studied. The [M ? N2]+˙ and [MH ? N2]+ ions of two types of the diazo ketones provide CID MIKE spectra similar to those of the corresponding M+˙ and MH+ of the heterocyclic compounds, i.e. a cyclization analogous to that in solution takes place. For the other three types of diazo compounds the Wolff rearrangement prevails in both the gas and liquid phases. The effect of the substituents on the cyclization process was studied. The data obtained permit the results of acid-catalysed cyclization of similar diazo ketones to be predicted on the basis of their CID MIKE spectra. Chemical ionization provides a closer similarity with reactions in solution than electron impact ionization, which can be rationalized by the protonation of the diazo ketone molecule being the driving force of the cyclization reaction either in solution or in the ion source of a mass spectrometer.  相似文献   

4.
The methane negative ion chemical ionization (NICI) mass spectra of polycyclic aromatic hydrocarbons are usually dominated by molecular, M? ˙ or M ? H? ions; however, ions resulting from additions to M have also been reported. Some of these ions have been observed at [M + 14]? ˙, [M + 15]?, [M + 30]? and [M + 32]?˙ and have been attributed to reactions with either oxygen-containing impurities in the buffer gas or alkyl radical species generated by ionization of a hydrocarbon buffer gas. In this study, the NICI spectra of fluorene, anthracene and fluoranthene were studied in detail using quadrupole and Fourier transform mass spectrometers. Spectra were acquired when reactive species such as oxygen, water, nitrous oxide and carbon dioxide were added to the nitrogen buffer gas. Experiments with deuterated methane were also carried out. These studies indicated that buffer gas impurities affect the NICI spectra; however, gas-phase ion-molecule reactions were not responsible for all of the observed products. In addition to electron- and ion-molecule reactions, ions were observed that resulted from wall-catalyzed oxidation reactions followed by electron capture. These reactions were enhanced by the addition of oxygen and elevated ion source temperatures. Depending upon the parent PAH structure, oxidation products such as ketones, quinones and anhydrides were formed.  相似文献   

5.
Analyses of a series of nitroaromatic compounds using fast atom bombardment (FAB) mass spectrometry are discussed. An interesting ion-molecule reaction leading to [M + O ? H]? ions is observed in the negative ion FAB spectra. Evidence from linked-scan and collision-induced dissociation spectra proved that [M + O ? H]? ions are produced by the following reaction: M + NO2? → [M + NO2]? → [M + O ? H]?. These experiments also showed that M ions are produced in part by the exchange of an electron between M and NO2? species. All samples showed M, [M ? H]? or both ions in their negative ion FAB spectra. Not all analytes studied showed either [M + H]+ and/or M+˙ in the positive ion FAB spectra. No M+˙ ions were observed for ions having ionization energies above ~9 eV.  相似文献   

6.
The effect of two completely different mobile phase compositions, reversed-phase acetonitrile-water + ammonium acetate and normal-phase cyclohexane, were compared in filament-on thermospray liquid chromatography-mass spectrometry (LC-MS) for the determination of selected chlorinated herbicides such as chloroatrazines and chlorinated phenoxyacetic acids. By using acetonitrile-water + 0.05 M ammonium acetate mixtures in positive ion mode thermospray LC-MS, the chloroatrazine herbicides showed the acetonitrile adduct ion [M + (CH3CN)H]+ as the base peak, whereas the chlorinated phenoxyacetic acids showed no signal. In contrast, when cyclohexane, which is reported for the first time as an eluent in the thermospray technique, was used as the mobile phase the chlorinated phenoxyacetic acid herbicides exhibited [M – H]+, [M – Cl]+ and M+˙ as the main ions. Negative ion mode thermospray LC-MS showed [M – H]? as the base peak for the chloroatrazines in the different mobile phases, whereas the chlorinated phenoxyacetic acids exhibited [M + H]?, [M + Cl]? or [M – HCl]? as the base peaks in cyclohexane and [M + acetate]? in acetonitrile-water-ammonium acetate.  相似文献   

7.
Laser desorption Fourier transform ion cyclotron resonance positive- and negative-ion mass spectra are presented for dimethyl 8-acetyl-3,7,12,17-tetramethylporphyrin-2,18-dipropanoate. The 248-nm laser ionization thresholds for both positive and negative ions are observed to be about 2.5 MW cm?2. The M+˙ molecular ion is assigned to the base peak in the low-power spectra whereas it is the M?˙ ion for the corresponding anion spectra. Increased intensities of [M + H]+ and [M ? H]? are observed with increased laser fluences of up to 38 MW cm?2. At high laser powers the negative-ion results reveal that a series of carbon-nitrogen cumulene and polyacetylene cluster ions are formed. Laser evaporation/multiphoton ionization/ and thermal evaporation/electron impact ionization/collision-induced dissociation experiments carried out on the porphyrin M+˙ and [M + H]+ ions over a range of translational kinetic energies and delay times after acceleration are compared and used to obtain mechanistic and structural information. In contrast to the electron impact experiments, which show only side-chain cleavage, the laser-based collision-induced dissociation experiments reveal that, in addition to side-chain cleavage, it is possible to cleave the porphyrin ring to various extents depending on the ion translational energy selected.  相似文献   

8.
Two monometayl- and four dimethyl-triazolocoumarin isomers were characterized by their electron impact mass spectra and by low-energy collision experiments performed on molecular ions M+˙ and other fragment ions with an ion-trap mass spectrometer. High-energy collision-activated dissociation measurements were performed on the protonated [M + H]+ and deprotonated [M ? H]? molecular ion obtained by fast atom bombardment and M+˙ species produced by electron impact ionization on a double-focusing, reverse-geometry instrument. The data obtained allowed unequivocal structural identification of all the compounds investigated.  相似文献   

9.
The major mass spectrometric fragments of ms-tetraphenylporphin and ms-tetra(p-chloro)phenylporphin are [M ? H]+˙ and [M ? Cl]+˙, respectively. Metal derivatives of these compounds give a modified characteristic fragmentation pattern with peak groups ending in the ions [M ? 4H]+˙, [M ? ? ? 5H]+˙ and [M ? 2? ? 2H]+˙ for the metallo ms-tetraphenylporphins, and [M ? ?Cl ? 2Cl ? 3H]+˙ and [M ? 2?Cl ? Cl ? H]+˙ for Mgms-tetra(p-chloro)phenylporphin. Deuterated metal derivatives indicate random hydrogen loss from both phenyl and pyrrole carbons. However, metal substituents do not significantly modify the fragmentation pattern in the case of ms-tetra(p-methoxy)phenylporphin. These patterns can be explained in terms of aromatic stabilization of the fragmentation products, coupled with charge localization on the π system in the free base, on the metal atom in the metallo derivatives and on the methoxy function in the p-methoxyphenyl derivative.  相似文献   

10.
A study of the electron ionization mass spectra of certain azadispiro(5.1.5.2)pentadec-9-ene-7,15-diones and azadispiro(4.1.4.2)tridec-8-ene-6,13-diones and their derivatives has revealed that these molecules undergo fragmentation primarily by two routes, viz. loss of CO and elimination of the substituent on the pyrrolidine nitrogen. Under positive ionization conditions loss of CO is the predominant process in the diones as it releases the ring strain, while in the 6- or 7-ols loss of the substituent on nitrogen is the favoured pathway. The further decomposition pathways of these primary fragments [M ? CO]+˙ and [M ? OR3]+ have been delineated with the help of high-resolution mass measurements, D2O exchange and metastable spectra, These compounds give very simple negative ion spectra showing only [M ? OR3]? and [NCO]? ions except the N-hydroxy compounds which show [M ? H]? ions as well.  相似文献   

11.
Mass Spectra of unsubstituted, 2-methyl-, 3-methyl and 2,3-dimethylchromones were examined. These compounds showed [RDA]+˙ and [RDA + H]+ ions as characteristc ions, together with [M? H]+,[M? CO]+˙,[M? CHO]+ and [RDA? CO]+˙ ions. Based on deuterium labelling experiments and measurement of metastable peaks by the ion kinetic energy defocusing technique, the origin of transferred hydrogen in the [RDA + H]+ ion was clarified. The mechanism of the [RDA + H]+ ion formation is discussed.  相似文献   

12.
The mass spectra of five diazaphenanthrenes formed by photochemical cyclodehydrogenation of styryl diazines are investigated. It is shown that fragmentation of these compounds starts almost exclusively at the heterocyclic part of the molecule and proceeds by competitive α-cleavage. From the intensity ratios of the ions [M ? H˙]+, [M ? HCN]+˙, [M ? N2]+˙ and [M ? 2 HCN]+˙ generated in this way, each isomer can unequivocally be identified.  相似文献   

13.
The O?˙ chemical ionization mass spectrri of the C8H10 alkylbenzenes, o-, m-. andp -xylene and ethylbenzene, show formation of [M ? H + O]?, [M ? H]?, [M ? H2]?˙ and, for the xylenes, [M ? CH3 + O]? as primary reaction products; the relative importance of these products depends on the isomer. However, [OH]? is a primary product from reaction of O?˙ with both the C8H10 isomers and hydrogen-containing impurities; [OH]? reacts further with the alkylbenzenes to produce [M ? H]? with the result that the chemical ionization mass spectra depend on experimental conditions such as sample size and the presence of impurities. The collision-induced charge inversion mass spectra of the [M ? H + O]? and [M ? H]? products allow only distinction of ethylbenzene from the xylenes. However, the collision-induced charge inversion mass spectra of the [M ? H2]?˙ ions show differences which allow identification of each isomer.  相似文献   

14.
Positive and negative ion fast atom bombardment (FAB) mass spectra of some monosubstituted nitroaromatic isomers are reported. Generally ions carresponding to [M + H]+ and M+ are observed in the positive ion FAB spectra; ions such as [M ? H] ? and M?˙ are observed in the negative ion FAB spectra. The use of FAB mass spectra to distinguish the isomers is discussed. Comparisons of FAB, chemical ionization and electron impact mass spectra of the same isomers (wherever possible) are reported. The structural information obtained in the negative ion FAB spectra complement those obtained in the positive ion FAB spectra.  相似文献   

15.
The N2 negative ion chemical ionization (NICI) mass spectra of aniline, aminonaphthalenes, aminobiphenyls and aminoanthracenes show an unexpected addition appearing at [M + 11]. This addition is also observed in the N2 positive chemical ionization (PCI) mass spectra. An ion at [M – 15]? is found in the NICI spectra of aminoaromatics such as aniline, 1- and 2-aminonaphthalene and 1- and 2-aminoanthracene. Ion formation was studied using labeled reagents, variation of ion source pressure and temperature and examination of ion chromatograms. These experiments indicate that the [M + 11], [M – 15] and [M + 11] ions result from the ionization of analytes altered by surface-assisted reactions. Experiments with 15N2, [15N] aniline, [2,3,4,5,6-2H5] aniline and [13C6] aniline show that the [M + 11] ion corresponds to [M + N – 3H]. The added nitrogen originates from the N2 buffer gas and the addition occurs with loss of one ring and two amino group hydrogens. Fragmentation patterns in the N2 PCI mass spectrum of aniline suggest that the neutral product of the surface-assisted reaction is 1,4-dicyanobuta-1,3-diene. Experiments with diamino-substituted aromatics show analogous reactions resulting in the formation of [M – 4H] ions for aromatics with ortho-amino groups. Experiments with methylsubstituted aminoaromatics indicate that unsubstituted sites ortho to the amino group facilitate nitrogen addition, and that methyl groups provide additional sites for nitrogen addition.  相似文献   

16.
The most significant mass spectral features of thirteen title compounds are discussed with the aid of high-resolution mass measurements and metastable peak analysis. The decomposition patterns of the compounds investigated are strongly affected by N-substitution and by methyl substituents ortho to the bridging chains (ortho effects). A unique feature connected with symmetrical macrocycles, bearing at least two ortho methyl substituents on each phenyl ring, is the presence in their spectra of diagnostically important peaks, corresponding to [M ? RNH2]+˙ and [M ? 2RNH2]+˙ (R = Ts, H, CH3). These daughter ions are proposed to be associated with the formation of cage compounds (multibridged cyclophanes), generated by an intramolecular [4 + 4] cycloaddition reaction of unstable linear bis-(o-xylylene) precursors.  相似文献   

17.
Electron attachment reactions of a series of (η6-arene)tricarbonylchromium(O) complexes have been examined in the gas phase. The electron capture process has been shown to be influenced by the structure of the η6-arene ligand and its substituents. Whereas (η6-benzene)- and (η6-mesitylene)tricarbonylchromium(O) undergo dissocative electron capture, or reductive decarbonylation, yielding [M? CO]?˙ ions of highest abundance in their negative ion mass spectra, [η6-(2,2-dimethylindan-1,3-dione)]tricarbonylchromium(O) forms a molecular negative ion which undergoes sequential CO eliminations and finally a demetallation to give the arene radical ion. A localization of charge on the coordinated arene ligand is proposed for the formation of [M]?˙ in this case. (η6-Methylbenzoate)tricarbonylchromium(O) also forms a molecular negative ion by secondary electron attachment which decomposes by simultaneous and consecutive eliminations of up to four CO molecules. The elucidation of a mechanism and sequence for these CO eliminations has been achieved by synthesizing and examining the negative ion mass spectrum of [η6-(C6H5·13CO2Me)]Cr(CO)3. The first CO loss in the principal fragmentation pathway occurs solely from the –Cr(CO)3 group of [M]?˙. The effect of para substituent groups on the stabilities of molecular negative ions and their fragmentations has been ascertained using a series of para-substituted (η6-methylbenzoate)tricarbonylchromium(O) compounds containing the groups NH2, OH, OCH3, CL and COOMe. The stabilities of the [M]?˙ ions have been rationalized in terms of the Hammett and Taft parameters σP, σI, σRP, σPO and σRO. The overall electronic substituent effect transmitted to the carbonyl groups of the –Cr(CO)3 unit involves both resonance and inductive components. In this series of compounds the stability of [M]?˙ decreases as the electron withdrawing capacities of the para substituents increase.  相似文献   

18.
Under Ammonia chemical Ionization conditions the source decompositions of [M + NH4]+ ions formed from epimeric tertiary steroid alchols 14 OHβ, 17OHα or 17 OHβ substituted at position 17 have been studied. They give rise to formation of [M + NH4? H2O]+ dentoed as [MHsH]+, [MsH? H2O]+, [MsH? NH3]+ and [MsH? NH3? H2O]+ ions. Stereochemical effects are observed in the ratios [MsH? H2O]+/[MsH? NH3]+. These effects are significant among metastable ions. In particular, only the [MsH]+ ions produced from trans-diol isomers lose a water molecule. The favoured loss of water can be accounted for by an SN2 mechanism in which the insertion of NH3 gives [MsH]+ with Walden inversion occurring during the ion-molecule reaction between [M + NH4]+ + NH3. The SN1 and SNi pathways have been rejected.  相似文献   

19.
The mass spectral fragmentations of all eleven chlorinated methyl propanoates have been studied. Deuterium labelling and metastable ion analysis were used to elucidate the fragmentation mechanism. The molecular ion peaks of all compounds are small, except methyl 3,3-dichloropanoate (38%). In most cases α-cleavage gives the base peak [COOCH3]+, and the loss of a chlorine atom from the molecular ion is characteristic of the 3-chloro, 3,3-dichloro and 3,3,3-trichloro compounds. Metastable ions showed the losses of small neutral molecules such as CH3OH, CH2CO, CO2 and CO from the [M? Cl]+ ion. α-Cleavage and the loss of Cl˙ gives an intense [M? COOCH3? Cl] peak, which is the base peak in the spectra of the 2,3-dichloro and 2,3,3-trichloro compounds.  相似文献   

20.
The negative ion mass spectra of dicarboxylic acids show [M]?˙ and prominent [M – H]?ions. These ions can therefore be used to determine the molecular weight of dicarboxylic acids which do not give positive molecular ions. The [C2H3]? ion is a base peak in the spectra of maleic and fumaric acids. Isomeric phthalic acids are readily differentiated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号