首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ESR spectra characteristic of peroxy radicals appeared rapidly in all of eleven hydrogen-containing polymers examined when treated with dilute fluorine. These radicals presumably result from the reaction of hydrocarbon and fluorocarbon radicals, existing at undetectably low steady-state concentrations, with the oxygen impurity content of commercial fluorine. In poly(vinylidene fluoride) films of thickness 11 and 58 μm the radical contents were nearly proportional to surface area rather than volume, in agreement with earlier reports of a shallow depth of penetration. Some polymers exhibited also or exclusively a broad spectral component, varying in character with the polymer; examples are polystyrene, polyethylene, poly (vinyl chloride), poly(vinylidene chloride), polyoctafluoropentadiene, polyhexafluoropropene, and a fluorinated graphite. The broad spectral component did not react with ordinary radical scavengers such as propylene and oxygen, and is probably not due to a fluorocarbon radical but to unknown transition metal fluorides.  相似文献   

2.
The formation of mechanoradicals under anaerobic conditions and their reactivity with oxygen at room temperature is described for several methacrylic vinyl polymers. Observed electron spin resonance (ESR) spectra of the mechanoradicals formed were all essentially identical and are clearly assigned to a respective endchain radical. The ESR kinetics of the mechanoradical formation of polymethylmethacrylate (PMMA) and polymethacrylamide (PMAAm) exhibit an interesting contrast; the progressive changes in the radical concentration in PMMA as a function of duration of milling gradually decrease after reaching a maximum value, while those of PMAAm show a parabolic increase. This discrepancy has been ascribed to mechanoradicals of PMAAm that are strongly stabilized by intermolecular and intramolecular doubly hydrogen-bonded networks among the amide groups. Such interactions also are to lower the reactivity of the mechanoradicals with oxygen. Thus, the mechanoradicals of both PMAAm and PMAA do not give a single peroxy radical, but rather a mixture of the mechanoradical and peroxy radical even after exposure to air, while the mechanoradicals of other polymers are rapidly converted to the corresponding peroxy radicals. Such a difference was observed in experiments on the mechanical fracture of such polymers under aerobic conditions.  相似文献   

3.
Free-radical transfer in polymers have been studied by pulse radiolysis and product analysis with the water-soluble polymers poly(vinyl alcohol), poly(acrylic acid), poly(methacrylic acid), polynucleotides and DNA. When OH radicals react with polymers the lifetime of the polymer radical thus created strongly depends on the number of radicals per polymer chain. Moreover, in negatively charged polymers the increased stiffness at high pH results in a remarkable increase of the lifetime of the radicals with respect to recombination. This allows a number of radical transfer reactions to occur (e.g. intramolecular H-transfer, β-fragmentation, depolymerization, reactions with additives).  相似文献   

4.
Kemp's triacid (KTA) and cyclohexane tricarboxylic acid (CTA) are small-molecule model systems for acrylic acid polymers, having the same functionalities and stereoregularities as isotactic poly(methacrylic acid) (PMAA) and poly(acrylic acid) (PAA), respectively. As part of an ongoing investigation of radicals produced by photolysis of acrylic polymers, the photochemistry and free radicals from the model systems have been studied using time-resolved EPR spectroscopy as a function of temperature and pH. Radicals are created by direct photolysis of the acids at 248 nm or by sensitized photo-oxidation using quinone triplet states at 308 nm. The two methods of radical production lead to different chemically induced electron spin polarization (CIDEP) patterns in the ensuing radicals, which are simulated and discussed. Well-resolved spectra are obtained at all temperatures for the model system radicals, which are determined to be in the slow motion condition. DFT calculations of the model system radicals are presented and discussed in support of the experimental data.  相似文献   

5.
The two types of radicals trapped in γ-irradiated poly(ethylene 2,6-naphthalene dicarboxylate) (PEN 2,6) have been identified by ESR as ? O? CH? CH2? O? (radical I) and a radical located on the naphthalene ring (radical II). The relative concentrations of radicals in the gross polymer are 10–20% radical I and 80–90% radical II. Similar trapped radicals have been identified in γ-irradiated poly(ethylene terephthalate) (PET), a structurally related polymer which differs only in the aromatic moiety, but the relative radical concentrations are quite different. These results are discussed in relation to the radiation resistance of the two polymers.  相似文献   

6.
γ-Ray-induced polymerizations of ferrocenylmethyl methacrylate (FMMA) in crystalline and amorphous states were investigated with kinetical and ESR methods. In the crystalline state the polymerization of FMMA proceeded slowly and gave low-molecular-weight polymers, whereas in the amorphous state it proceeded rapidly and gave polymers of much higher molecular weight. Molecular weight distributions of these polymers were binodal. The temperature dependence and the dose-rate dependence of the polymerization rates were different between the two states. Wide-line nuclear magnetic resonance (NMR) spectra of the amorphous monomer suggested that the polymerization proceeded in a supercooled state. Electron spin resonance (ESR) spectra of γ-irradiated FMMA and 1,1′-ferrocenyl-di(methyl methacrylate) showed that ferrocene radicals and methacrylic radicals were formed simultaneously at low temperature; with increasing temperature the former radicals disappeared, whereas the latter changed into growing chain radicals. The yields of radicals were relatively low; this means that ferrocene groups in the monomers behave as a radiation energy absorber.  相似文献   

7.
We studied the chemical reaction process of polypropylene (PP), ethylene‐propylene copolymer (EPM), and ethylene‐propylene‐diene copolymer (EPDM) crosslinking induced by dicumyl peroxide (DCP) using electron spin resonance (ESR). Free radicals appeared at an elevated temperature of around 120 °C and the behavior and kinetics of the reaction process were observed at 180 °C. The radical species detected in PP were alkyl type radicals, formed by the abstraction of hydrogen atoms from the tertiary carbon of polymer chains. For EPDM containing a diene component, the radicals were trapped at double bonds in this diene component to form allyl radicals. The resolutions of these spectra were extremely clear; hence, isotropic spectra of these polymer radicals were obtained. We measured the ESR at high temperatures and confirmed that the process of crosslinking induced by DCP was a free radical reaction. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 3383–3389, 2000  相似文献   

8.
Low temperature relaxations in poly(methacrylic acid) (PMAA) have been studied by electron spin resonance (ESR) spectroscopy. The observed 8 line ESR spectra of irradiated PMAA in the temperature range 77-300K (LNT-RT) is attributed to the free radicals of the type ~ CH2? CH? CH3. Assignment of ESR spectra to free radicals has been made on the basis of magnetic parameters employed to simulate ESR spectra at different temperatures. Further, ESR spectra below LNT have been simulated, using the set of parameters employed to simulate the experimental spectrum at LNT. Magnetic parameters of the ESR spectra at LNT and below LNT indicate γ- and δ-relaxations of PMMA chains. © 1994 John Wiley & Sons, Inc.  相似文献   

9.
Electron spin resonance (ESR) features in heavily doped conjugated polymers are investigated through the comparison of temperature dependences of ESR spectra between head-to-tail coupled regioregular (RR) and regiorandom (RRa) poly(3-octylthiophenes) (P3OTs). RR-P3OT, used as a model of having crystalline grains in the solid film, is found to exhibit anisotropic ESR spectra, whereas RRa-P3OT gives almost isotropic ESR spectra similar to those of usual heavily doped conjugated polymers. This difference in the degree of spectral anisotropy primarily arises from a difference in their film morphology. Spectral simulations show the anisotropy observed in RR-P3OT to be caused by g-anisotropy. The presence of the g-anisotropy in RR-P3OT indicates that its polarons spend most of the time within a single crystalline grain that has some domains with a common direction of the g-tensor. The g-anisotropy turns out to decrease with increasing temperature. This result is explained by thermally activated hopping motions between crystalline grains. We emphasize that the decrease in the g-anisotropy with temperature should be associated with its activated type of temperature dependence of conductivity. In RRa-P3OT, its isotropic ESR spectra are suggested to be caused by the interchain motion as well as the intrachain one.  相似文献   

10.
The photo- and radiation-induced degradation of poly(styrene-co-methyl methacrylate) (poly(St-co-MMA)) has been investigated by both electron spin resonance (ESR) and viscosity measurements. On ultraviolet irradiation of poly(St-co-MMA) film at 30°C in vacuum, the scission type radical from poly(methyl methacrylate) is produced in the initial stages of the photo-irradiation. The polystyryl radical from polystyrene gradually increases with irradiation time. The resulting ESR spectrum is composed of those of both radicals. The ratio of the radicals produced in poly(St-co-MMA) by photo-irradiation was estimated by comparison with simulated ESR spectra. The viscosity average molecular weight, Mv of photo-irradiated poly(St-co-MMA) decreases at short irradiation times and gradually increases at longer irradiation times. This phenomenon reflects the fact that the photo-degradation of the copolymer begins from the MMA component in poly(St-co-MMA). The γ-ray-induced degradation of poly(St-co-MMA) has also been examined by the same methods as those used in the photo-degradation and confirms that the degradation begins from the MMA component in the copolymer. The protective effect of polystyrene was also found for the radiation-induced degradation of the polymethyl methacrylate units in poly(St-co-MMA).  相似文献   

11.
The temperature dependence of the ESR spectra of poly(methacrylic acid) and poly-(methyl methacrylate) γ-irradiated at room temperature was studied between ?196°C and +25°C. The conventional 9-line spectrum was observed throughout this range with no significant spectral change, in contrast to the propagating radical ··· CH2? °C(CH3)COOR found in methacrylic acid monomer or barium methacrylate dihydrate irradiated at ?196°C. In addition, the irradiation of methacrylic acid monomer with a low dose at 0°C gave the same 13-line spectrum as that of the propagating radical obtained by the irradiation at ?196°C, while prolonged irradiation at 0°C gave the same conventional 9-line spectrum as that of poly(methacrylic acid) or poly(methyl methacrylate). The conventional 9-line spectrum has a much weaker 4-line component than that of the propagating radical. The difference comes from the surrounding matrix, and the conventional 9-line spectrum is well interpreted by introducing the concept of the distribution of the conformational angle in the irregular polymer matrix. From simulation of the ESR spectrum, it was found that the intensity of the 4-line component is very sensitive to the distribution, and that the observed 9-line spectrum is well reproduced assuming a Gaussian distribution (half-height width of 5–6°) around the most probable conformation which is nearly the same as that of the propagating radical, where the conformational angles of the two C? Hβ bonds to the half-filled p-orbital are 55° and 65°.  相似文献   

12.
Ferric chloride-photosensitized free-radical initiation was used to generate propagating radicals in polymerization of methacrylic acid (MAA), allyl methacrylate (AMA), methyl methacrylate (MMA), 1,3-butylene dimethacrylate (1,3-BDMA), hydroxypropyl methacrylate (HPMA), lauryl methacrylate (LMA), hexyl methacrylate (HMA), and methacrylamide (MA) in rigid glasses of methanol or acetone at near liquid nitrogen temperatures. The formation and conformational changes of these propagating radicals at different temperatures were studied by electron spin resonance (ESR) spectroscopy. When methanol was the rigid glass, ·CH2OH radicals were formed initially and were stable below ?160°C. As the temperature of the rigid glass was increased, the ·CH2OH radicals reacted with monomer to yield propagating radicals. With the exception of the propagating radical for methacrylamide, the propagating radicals of the methacrylates examined initially generated five-line ESR spectra which gradually changed to nine-line spectra, as temperature of the rigid glass was increased. It was concluded that one type of propagating radical was formed in all cases. However, when the temperature of the rigid glass was increased, the single structural conformation that initially allowed one of the methylene hydrogens and methyl group to interact with the unpaired electron to generate only a five-line spectrum was changed to yield a second conformation that allowed interaction to generate an additional four-line spectrum. Finally, a mixture of the propagating radical for methacrylate monomer in two structural conformations was obtained, and an ESR spectrum consisting of nine lines (5 + 4 lines) was generated. In the case of the propagating radical for methacrylamide this change to yield two structural conformations evidently was hindered, so that only an ESR spectrum consisting of five lines was generated.  相似文献   

13.
The ESR study of the radicals formed in mechanochemical polymerization of acrylamide (AAM) was undertaken. The nature of the radical formation was compared with the mechano-radical formation produced by mechanical fracture of polyacrylamide (PAAM). The structure of radicals formed were all identified to be an end-chain radical, equivalent to a polymer-chain propagating radical. The computer simulation disclosed that the observed spectra of the propagating radical can be approximated essentially by two kinds of component spectra, a large amount of triplet, and a small amount of quarter (a triplet of doublets). Thus, the existence of two major conformers in a single end-chain radical has been proposed. The ESR kinetics of the radical formation were further studied and its correlation with the nature of polymerization (the changes in molecular weight and polymer conversion) was discussed.  相似文献   

14.
This study shows the ESR spectra of oxoiron(IV) porphyrin pi-cation radicals of 1-8 in dichloromethane-methanol (5:1) mixture. We reported in a previous paper that oxoiron(IV) porphyrin pi-cation radicals of 1-4 are in an a(1u) radical state while those of 5-8 are in an a(2u) radical. The ESR spectra (g( perpendicular)(eff) approximately 3.1 and g( parallel)(eff) approximately 2.0) for the a(1u) radical complexes, 1-4, appear quite different from those reported previously for the oxoiron(IV) porphyrin pi-cation radical of 5 (g(y) = 4.5, g(x) = 3.6, and g(z) = 1.99). The unique ESR spectra of the a(1u) radical complexes rather resemble those of compound I from Micrococcus lysodeikticus catalase (CAT) and ascorbate peroxidase (ASP). This is the first examples to mimic the ESR spectra of compound I in the enzymes. From spectral analysis based on a spin Hamiltonian containing an exchange interaction, the ESR spectra of 1-4 can be explained as a moderate ferromagnetic state (J/D approximately 0.3) between ferryl S = 1 and the porphyrin pi-cation radical S' = (1)/(2). The magnitudes of zero-field splitting (D) for ferryl iron and isotropic J value, estimated from the temperature-dependence of the half-saturation power of the ESR signals, are approximately 28 and approximately +8 cm(-1), respectively. A change in the electronegativity of the beta-pyrrole substituent hardly changes the ESR spectral feature while that of the meso-substituent slightly does owing to the change in the E/D value. On the basis of the present ESR results, we propose the a(1u) radical state for compound I of CAT and ASP.  相似文献   

15.
Electron spin resonance (ESR) spectroscopy can contribute to understanding both the kinetics and mechanism of radical polymerizations. A series of oligo/poly(meth)acrylates were prepared by atom transfer radical polymerization (ATRP) and purified to provide well defined radical precursors. Model radicals, with given chain lengths, were generated by reaction of the terminal halogens with an organotin compound and the radicals were observed by ESR spectroscopy. This combination of ESR with ATRPs ability to prepare well defined radical precursors provided significant new information on the properties of radicals in radical polymerizations. ESR spectra of the model radicals generated from tert-butyl methacrylate precursors, with various chain lengths, showed clear chain length dependent changes and a possibility of differentiating between the chain lengths of observed propagating radicals by ESR. The ESR spectrum of each dimeric, trimeric, tetrameric, and pentameric tert-butyl acrylate model radicals, observed at various temperatures, provided clear experimental evidence of a 1,5-hydrogen shift.  相似文献   

16.
The effect of antioxidant on the reaction mechanism of chemical crosslinking of polyethylene (PE) with dicumyl peroxide (DCP) at high temperatures was investigated by electron spin resonance (ESR). The antioxidant reacts with the alkyl radicals in PE formed by the thermal decomposition of DCP above 120°C, and disturbs the crosslinking. A phenolic type antioxidant produced the phenoxy radical by the reaction with alkyl radicals formed in PE. It is suggested that the selection of a suitable antioxidant for PE crosslinking can be made by ESR analysis. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 2431–2439, 1997  相似文献   

17.
Thermal-induced conversion of maleic and fumaric acid anion radicals produced by γ irradiation at 77 K in poly(methyl methacrylate) (PMMA) was studied by electron spin resonance (ESR) and optical absorption spectroscopic measurements. The ESR spectra of these acid anion radicals change into two-line spectra with a line separation of ca. 10 G by thermal annealing. This spectrum is assigned to a protonated radical of each acid anion radical. Anion radicals of the solutes are relatively stable below the γ transition point of PMMA and the conversion reaction takes place near this point. This means that the molecular motion of matrix molecule affects the radical conversion reaction.  相似文献   

18.
The effect of γ irradiation on a series of vinyl polymers, which included polymethacrylonitrile, poly(α-chloroacrylonitrile), poly(dimethyl itaconate), poly(acrylic anhydride), and poly(methacrylic anhydride), was studied as part of a program to develop improved positive lithographic resists. Radiation-induced degradation was observed for polymethacrylonitrile, poly(α-chloroacrylonitrile), and poly(methacrylic anhydride). Molecular weight degradation as a function of dose was monitored by membrane osmometry or GPC techniques. For γ-irradiated poly(dimethyl itaconate) and poly(acrylic anhydride) crosslinking was found to predominate over chain scission. [G(s)–G(x)] values, calculated from molecular weight inverse versus dose curves, indicate that both nitrile polymers degraded more efficiently than a poly(methyl methacrylate) reference standard on the basis of M n changes. The radiation behavior of the first three polymers confirms earlier findings than vinyl polymers with quaternary carbons predominantly degrade when subjected to ionizing radiation.  相似文献   

19.
In order to elucidate the structure of methacrylic acid radicals, the change with observation temperature of the ESR spectrum of free radicals trapped in solid methacrylic acid γ-irradiated at ?196°C was studied. Below ?80°C, we found a 9-line spectrum, which is similar to the ordinary 9-line spectrum observed in irradiated poly(methacrylic acid) or poly(methyl methacrylate), but which differs in the stronger intensity of the so-called 4-line component. Our 9-line spectrum changes reversibly into a 13-line spectrum above ?80°C. With broad-line NMR measurements of methacrylic acid, it was found that there is such an unusual crystalline transition around ?30°C that the line width is narrower in the lower-temperature region (phase II) than that in the higher-temperature region (phase I). The change of the ESR spectrum can be interpreted in terms of the exchange of the two β-protons due to the hindered oscillation around the Cα? Cβ bond of the single radical ···CβH2Cα(CH3)COOH if one assumes the gradual change of the hindering potential barrier caused by the crystalline transition and the lower barrier in phase II. The modified Bloch treatment gave the hindering potential barrier to be 7.2 kcal/mole in phase I and 1.5 kcal/mole in phase II. The difference between our 9-line spectrum and the ordinary one with the very weak 4-line component comes from the difference of the surrounding matrix.  相似文献   

20.
The radicals formed in poly(methyl methacrylate) (PMMA) under vacuum by UV irradiation at room temperature were carefully examined from 77 K to 300 K by electron spin resonance (ESR). The conventional nine-line spectrum was observed with significant overall intensity changes in contrast to previous reports. The intensity decreases greatly as the temperature increases from 77 K to 100 K. The intensity of the ESR spectrum increases as the temperature increases gradually from 100 K to 260 K. The spectral changes were reversible at all temperatures. Three different models are considered to interpret the temperature dependence of the intensity of the ESR spectrum. The results indicate that the ESR spectrum depends on (1) the steady-state concentration of the propagating radical in the polymer, (2) the conformational distributions of the radicals, and (3) the environmental structures of the polymer matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号