首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The main-chain thermotropic liquid-crystalline poly(heptane-1,7-diyl biphenyl-4,4′-dicarboxylate) (P7MB) was investigated by time-resolved small-angle X-ray scattering (SAXS), wide-angle X-ray scattering (WAXS), and differential scanning calorimerty (DSC). Nonisothermal crystallisation with different rates of cooling and heating was used. On cooling, two phase transitions are observed, isotropic melt - smectic (I-Sm) and Sm- three-dimensional crystalline structure (Sm-Cr), whereas on heating only one transition is observed, Cr-I transition. The transition enthalpies were calculated. Temperature dependences of d-spacings of all crystalline peaks and of the peak observed at high values of scattering vector in the SAXS region were derived. The temperature dependence of the degree of crystallinity was established, based on the integrated intensities of the crystalline peaks and amorphous halo in WAXS.  相似文献   

2.
The first‐ and second‐generation dendronized polymers containing azobenzene mesogen were designed and successfully synthesized via free radical polymerization. The chemical structures of the monomers were confirmed by elemental analysis, 1H NMR, and 13C NMR. The molecular characterizations of the polymers were performed with 1H NMR and gel permeation chromatography. The phase structures and transition behaviors were studied using differential scanning calorimetry, polarized light microscopy, and small‐angle X‐ray scatter experiments. The experiment results revealed that the first‐generation dendronized polymer exhibited liquid crystalline behavior of the conventional side‐chain liquid crystalline polymer with azobenzene mesogen, that is, the polymer exhibited smectic phase structure at lower temperature and nematic phase structure at higher temperature. However, the second‐generation dendronized polymers exhibited more versatile intriguing liquid crystalline structures, namely smectic phase structure at lower temperature and columnar nematic phase structure at higher temperature, and moreover, the phase structure still remained before the decomposition temperature. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1149–1159, 2010  相似文献   

3.
Liquid‐crystalline (LC) ionomers containing 2–15 mol % calcium ions were synthesized by the exchange reaction between the nematic LC copolymer, bearing oxycyanobiphenyl mesogenic groups, and the carboxyl groups of acrylic acid, with calcium acetate. The incorporation of 2–3 mol % Ca ions in the LC copolymer leads to some rise in the clearing point and glass‐transition temperature. A further increase in the concentration of metal ions (>5 mol %) is accompanied by induction of the smectic A phase where clearing point and glass‐transition temperatures keep constant values. Phase behavior of the LC ionomers may be understood on the basis of a structural model that considers the dual role of calcium ions in a polymer matrix. Metal ions act as points of noncovalent electrostatic binding of the polymer chains and are capable of forming larger ionic associates (multiplets). The comparison of the phase behavior of sodium and calcium containing LC ionomers shows that the formation of ionic links may lead to the growth of structure defects suppressing a positive influence of charged groups on the mesophase clearing temperature. The orientation behavior of the LC ionomers in the magnetic field was studied. It was shown that the incorporation of calcium ions (3 mol %) in the LC copolymer matrix leads to the growth of orientation order parameter S of the nematic phase. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 39: 3953–3959, 2001  相似文献   

4.
The orientation relaxation behavior of a stretched side-chain liquid crystalline polymer (SCLCP) on a poly(vinyl alcohol) (PVA) film under strain was investigated through infrared dichroism at temperatures near its phase transitions. We found a reorientation of the aligned mesogens over the smectic to nematic transition of the SCLCP, changing the alignment from an initially, mechanically induced perpendicular orientation to a parallel orientation with respect to the film-stretching direction. This reorientation was found to be irreversible during subsequent nematic to smectic transition, with the parallel orientation preserved. We show that it is possible to stop the reorientation process by cooling the SCLCP back to its smectic phase just before the change in the alignment direction. Moreover, this interruption can result in a stable, zero macroscopic orientation of the mesogens in the stretched SCLCP, and a subsequent heating to the smectic-nematic transition allows the reorientation process to restart and to be completed. We discuss the possible mechanisms for this mesophase transition-induced reorientation and the factors that could influence the process. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35 : 1491–1499, 1997  相似文献   

5.
A series of viologen polymers with bromide, tosylate, and triflimide as counterions were prepared by either the Menshutkin reaction or metathesis reaction in a common organic solvent. Their polyelectrolyte behavior in methanol was determined by solution viscosity measurements, and their chemical structures were determined by Fourier transform infrared and Fourier transform NMR spectroscopy. They were characterized for their thermotropic liquid‐crystalline properties with a number of experimental techniques. Each of the viologen polymers with organic counterions had a low melting transition or fusion temperature above which it formed either a high‐order smectic phase or a low‐order smectic phase. Each of them also exhibited a smectic‐to‐isotropic transition. The ranges of the liquid‐crystalline phase were 80–88 °C for viologen polymers with tosylate as a counterion and 120–146 °C for viologen polymers with triflimide as a counterion. They had excellent thermal stability. The ranges of thermal stability were 288–329 °C for viologen polymers with tosylate as a counterion and 343–350 °C for viologen polymers with triflimide as a counterion. The fluorescence property for all of the viologen polymers in either aqueous or methanol solution was also included in this study. For example, the viologen polymer containing the 4,4′‐bipyridinium and p‐xylyl units along the backbone of the polymer chain with triflimide as a counterion had an absorption spectrum (λmax = 265 nm), an excitation spectrum (λex values = 357, 443, and 454 with monitoring at 533 nm), and an emission spectrum (λem = 536 nm with excitation at 430 and 450 nm) in methanol. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 659–674, 2002; DOI 10.1002/pola.10134  相似文献   

6.
Several new side‐chain liquid crystalline (LC) polysiloxanes and elastomers ( IP ‐ VIP ) bearing fluorinated mesogenic units and crosslinking mesogens were synthesized by a one‐step hydrosilylation reaction with poly(methylhydrogeno)siloxane, a fluorine‐containing LC monomer 4′‐undec‐10‐enoyloxy‐biphenyl‐4‐yl 4‐fluoro‐benzoate and a crosslinking LC monomer 4′‐(4‐allyloxy‐benzoxy)‐biphenyl‐4‐yl 4‐allyloxy‐benzoate. The chemical structures and LC properties of the monomers and polymers were characterized by use of various experimental techniques such as FTIR, 1H‐NMR, EA, TGA, DSC, POM and XRD. The effect of crosslinking mesogens on mesomorphic properties of the fluorinated LC polymers was studied as well. The obtained polymers and elastomers were soluble in many solvents such as toluene, tetrahydrofuran, chloroform, and so forth. The temperatures at which 5% weight loss occurred (Td) were greater than 250°C for all the polymers, and the weight of residue near 600°C increased slightly with increase of the crosslinking mesogens in the fluorinated polymer systems. The samples IP , IIP , IIIP and IVP showed both smectic A and nematic phases when they were heated and cooled, but VP and VIP exhibited only a nematic mesophase. The glass transition temperature (Tg) of polymers increased slightly with increase of crosslinking mesogens in the polymer systems, but the mesophase–isotropic phase transition temperature (Ti) and smectic A–nematic mesophase transition temperature (TS‐N) decreased slightly. It suggests that the temperature range of the mesophase became narrow with the increase of crosslinking mesogens for all the fluorinated polymers and elastomers. In XRD curves, the intensity of sharp reflections at low angle decreased with increase of crosslinking mesogens in the fluorinated polymers systems, indicating that the smectic order derived from fluorinated mesogenic units should be destroyed by introduction of more crosslinking mesogens. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
Surface‐induced layering of fluorinated and protonated segments in thin films of a main‐chain liquid‐crystalline polymer, consisting of α‐methylstilbene, bridged by a fluorinated group was revealed by neutron reflectometry. The layering was driven by the difference in surface energy of the fluorinated and protonated segments and by the inherent ordering of the polymer. The lower‐surface‐energy fluorinated segments segregated to the air surface, and the protonated segments segregated to the SiOx layer at the Si substrate. The ordering induced by the interface decayed into the film with a characteristic decay length of about 100 Å. The surface‐induced periodicity ranged from 15 to 20 Å, which is approximately equal to the molecular dimension of the repeating unit on the polymer backbone. The magnitude of segregation increased upon annealing in the liquid‐crystalline temperature range. The segregation was retained upon annealing above the bulk order–disorder transition temperature. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2817–2824, 2002  相似文献   

8.
We study how the uniaxial–biaxial nematic phase transition changes its nature when going from a low‐molecular‐weight liquid crystal to a liquid‐crystalline elastomer or polymer (the latter above the Maxwell frequency) and find a qualitative change due to the presence of a coupling to the strain field in these materials. While this phase transition can be of second‐order in low‐molecular‐weight materials, as is also experimentally observed, we show here that the order of this phase transition is changed generically to no phase transition at all or to a first‐order phase transition in mean‐field approximation. We analyze the influence of an external mechanical stress field above the uniaxial–biaxial nematic phase transition and find that either biaxial nematic order is induced, which is linear or quadratic in the stress intensity, or no response to an external stress results at all, depending on the relative orientation of the applied shear with respect to the director of the uniaxial nematic phase.  相似文献   

9.
10.
Photoactive hyperbranched benzylidene liquid‐crystalline polyester (PAHBP) and photoactive linear benzylidene liquid‐crystalline polyester (PALBP) were synthesized by solution polycondensation with pyridine as an acid acceptor. PAHBP and PALBP were thoroughly characterized with Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrophotometry, fluorescent spectrophotometry, gel permeation chromatography, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy. Both polymers exhibited nematic mesophase. The glass‐transition temperature and liquid‐crystalline isotropic temperature of PAHBP were higher than those of PALBP. During photolysis under ultraviolet light, both polymers underwent an intermolecular photocycloaddition reaction, and the photoactivity of PAHBP was faster than that of PALBP; this was further confirmed by photoviscosity studies. PALBP and PAHBP were fluorescent in nature. An increase in the fluorescence intensity with the time of ultraviolet‐light irradiation was observed for both PAHBP and PALBP. The rate of increase in the fluorescence intensity of the linear analogue (PALBP) was higher than that of the hyperbranched polymer (PAHBP). This behavior could be attributed to the attainment of better planarity in the case of the linear one but not in the case of PAHBP because of the rapid crosslinking of PAHBP leading to an irregular architecture. This behavior was further confirmed by the calculation of the steric energy from corresponding model compounds. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3986–3994, 2006  相似文献   

11.
In order to surmount drawbacks of the infrared spectroscopy (IR) itself during investigating the mesophase-transition behaviours and mechanism of the thermotropic liquid crystalline polymers (TLCPs), the elemental phosphorus as an internal marker was introduced into the main-chain TLCPs. The detail mechanism of the glass transition and mesophase phase transition of the phosphorus-containing aromatic liquid crystalline copolyester (poly(-hydroxybenzate-co-DOPO-benzenediol dihydrodiphenyl ether terephthalate) [PHDDT]) was revealed through tracing the internal marker with the perturbation correlation moving window 2-dimensional correlation and 2-dimensional correlation analysis (2DCOS) correlation IR spectra. The results showed that the phosphorus-containing unit did not participate in the glass transition of the PHDDT. The results of the 2DCOS showed that the PHDDT mesophase phase transition took place through adjustment of the phosphorus-containing units. Simultaneously, the adjustment of the phosphorus-containing unit also can induce the motion of the other groups, and the sequential orders of the spectral changes were Ar–O–Ar → ester C–O → C=O. However, the sequential orders of the spectral changes were converse during the PHDDT glass transition.  相似文献   

12.
Phase diagrams of main‐chain liquid‐crystalline polymer (MCLCP) solutions have been calculated self‐consistently on the basis of a simple addition of the Flory–Huggins free energy for isotropic mixing, the Maier–Saupe free energy for nematic ordering, and the Flory free energy for chain rigidity of the MCLCP backbone. The calculated phase diagram is an upper critical solution type overlapping with the nematic–isotropic transition. The phase diagram consists of liquid–liquid, liquid–nematic, and pure nematic regions. Subsequently, the dynamics of thermally induced phase separation and morphology development have been investigated by the incorporation of the combined free energy density into the coupled time‐dependent Ginzburg–Landau (model C) equations, which involve conserved compositional and nonconserved orientational order parameters. The numerical calculations reveal a variety of the morphological patterns arising from the competition between liquid–liquid phase separation and nematic ordering of the liquid‐crystalline polymer. Of particular interest is the observation of an inflection in the growth dynamic curve, which may be attributed to the nematic ordering of the MCLCP component, which leads to the breakdown of the interconnected domains. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 913–926, 2003  相似文献   

13.
New side‐chain cholesteric liquid‐crystalline elastomers containing cholesteryl 4‐allyloxybenzoate as cholesteric mesogenic units and biphenyl 4,4′‐bis(10‐undecen‐1‐ylenate) as smectic crosslinking units were synthesized. The chemical structures of the olefinic compounds and polymers obtained were confirmed by element analysis, Fourier transform infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectra. The mesogenic properties were investigated by differential scanning calorimetry, thermogravimetric analysis, polarizing optical microscopy, and X‐ray diffraction measurements. The influence of the concentration of the crosslinking unit on the phase behavior of the elastomers was examined. The elastomers containing less than 17 mol % of the crosslinking units revealed elasticity, reversible mesomorphic phase transition, wider mesophase temperature ranges, and higher thermal stability. The experimental results demonstrated that the glass‐transition temperature, isotropization temperature, and mesophase temperature ranges decreased with an increasing concentation of the crosslinking unit. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 5262–5270, 2004  相似文献   

14.
In this work we have used synchrotron x-radiation diffraction to follow in real-time the isotropic-smoetic phase transition of a side-chain liquid crystalline polymer. The analysis of the x-ray data indicated that the transition occurs within a very narrow biphasic region. As the transition takes place, the size of the smectic regions, as indicated by the width of the diffraction peaks, changed only very slightly before impingement, suggesting a two-dimensional growth pattern. A thermal investigation of the polymer paralleling the x-ray experiments was undertaken and a kinetic analysis applied to the resulting data. Qualitative agreement with a disk-like growth of the smectic regions was found. We have shown that the overall kinetics of the isotropic-smectic transition of a side-chain polymer can be studied by x-ray diffraction permitting the evaluation of several structural parameters. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
Chiral liquid crystalline polymers containing biphenylene and azobenzene as the mesogensand S(-)-2-methyl-1-butanol as the chiral end group were synthesized and characterized by DSC,POM and X-ray diffraction. These polymers show crystalline or glassy liquid crystalline phase atroom temperature. Most polymers show smectic A or highly ordered smectic phases abovemelting temperature.  相似文献   

16.
This work focuses on the design, synthesis, and characterization of a series of mesogen‐jacketed liquid crystalline polymers (MJLCPs), poly(alkyl 4′‐(octyloxy)‐2‐vinylbiphenyl‐4‐carboxylate) (pVBP(m,8), m = 1, 2, 4, 6, 8, 10, 12). For the first time, we realized asymmetric substitutions in the mesogens of MJLCPs. The polymers obtained by conventional free radical polymerization were investigated in detail by a combination of various techniques, such as differential scanning calorimetry, wide‐angle X‐ray diffraction, and polarized light microscopy. Our results showed that all the polymers were thermally stable, and their glass transition temperatures decreased when m increased. The liquid crystalline (LC) phases that developed at high temperatures and disappeared at low temperatures were strongly dependent on the difference in lengths of alkyl groups on the 4 and 4′ substitution positions of the side‐chain biphenyl. While polymer pVBP(1,8) was not liquid crystalline, columnar liquid crystalline phases were observed for all other pVBP(m,8) (m = 2, 4, 6, 8, 10, 12) polymers. Polymer pVBP(8,8) showed a tetragonal columnar nematic liquid crystalline phase, and the other LC polymers exhibited columnar nematic phases. In additions, the smaller the difference in the lengths of the terminal alkyls, the easier the development of the liquid crystalline phase. Birefringence measurements showed that solution‐cast polymer films exhibited moderately high positive birefringence values, indicating potential applications as optical compensation films for liquid crystal displays. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

17.
We have studied the nonisothermal and isothermal crystallization kinetics of an aromatic thermotropic liquid crystalline polyimide synthesized from 1,2,4,5-benzenetetracarboxylic dianhydride (PMDA) and 1,3-bis[4-(4′-aminophenoxy) cumyl] benzene (BACB) by means of differential scanning calorimetry (DSC). Polarized light microscopy (PLM) and wide-angle X-ray diffraction (WAXD) results confirm that this polyimide exhibits a smectic texture. Nonisothermal crystallization showed two strong and one weak exothermic peaks during cooling. The phase transition from isotropic melt to liquid crystalline state is extremely fast which completes in several seconds. The mesophase transition has a small Avrami parameter, n, of approximate 1. The isothermal crystallization of 253–258°C has been examined. The average value n is about 2.6 and the temperature-dependent rate constant k changes about two orders of magnitude in the crystallization temperature range of 6°C. The slope of ln k versus 1/(TcΔT) is calculated to be −2.4 × 105, which suggests nucleation control, via primary and/or secondary nucleation for the crystallization process. During the annealing process, a new phase (slow transition) is induced, which grows gradually with annealing time. At lower annealing temperatures (220–230°C), the slow transition process seems not to be influenced by the crystals formed during cooling process and its Avrami parameter n is ca. 0.3–0.4. However, the slow transition was hindered by the crystals formed during cooling process when annealed at higher temperature (230–240°C). © 1998 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 36: 1679–1694, 1998  相似文献   

18.
Three series of thermotropic liquid crystalline polycarbonates and poly(ester‐carbonate)s were prepared by solution polycondensation of 4,4′‐biphenyldiol (BP), 4′‐hydroxybiphenyl‐4‐hydroxybenzoate (HHB), or 4‐hydroxyphenyl‐4″‐hydroxybiphenyl‐4′‐carboxylate (HHBP), as mesogenic unit, with 1,10‐bis(p‐hydroxybiphenoxy)decane (N10), bisphenol A (BPA), 4,4′‐dihydroxy‐diphenyl ether (BPO), 4,4′‐[phenylbis(oxy)]bisphenol (BPOO), methylhydroquinone (MeHQ), or phenylhydroquinone (PhHQ). One series of cholesteric poly(ester‐carbonate)s were also prepared by using HHBP, the aromatic diols mentioned above and isosorbide as the chiral moiety. All polycondensations were implemented in pyridine by using triphosgene as the condensation agent. The synthesized polycarbonates were characterized by viscometer, FTIR, DSC, TGA measurements, polarizing microscopy equipped with a heating stage, and WAXD powder pattern. In this study, it was found that the liquid crystalline properties of polycarbonates strongly rely on the mesogenic unit applied. HHBP‐series exhibits a wide temperature region of liquid crystalline (LC) phase even with 50% of bisphenol A (BPA), which is a V‐shaped structure and usually destroys liquid crystalline properties. In addition, homopolycarbonate with HHBP structure possesses extraordinarily low phase‐transition temperature and wide liquid crystalline phase range, due to its asymmetric structure. This asymmetric structure results in head‐to‐tail, head‐to‐head, and tail‐to‐tail random conformation of polymer chain. The isosorbide containing poly(ester‐carbonate)s formed cholesteric phase, which showed homogeneous blue, green, or red Grandjean texture upon shearing in molten state and the Grandjean texture could be frozen easily while quenching the sample to the room temperature. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1852–1860, 2000  相似文献   

19.
A novel photoactive, liquid‐crystalline, hyperbranched benzylidene polyester (PAHBP) was synthesized from a dilute solution of an A2 photoactive monomer [bis(4‐hydroxybenzylidene)‐4‐phenyl cyclohexanone] and a B3 monomer (1,3,5‐benzene tricarboxylic acid chloride) by the solution polycondensation method in the presence of pyridine as a condensing agent. PAHBP was thoroughly characterized by Fourier transform infrared, 1H and 13C NMR, ultraviolet–visible spectrometry, and gel permeation chromatography. The inherent viscosity of the polymer was 0.35 dL/g in tetrahydrofuran. The degree of branching was 0.53, which confirmed the branched architecture of the polymer. Furthermore, thermogravimetric analysis, differential scanning calorimetry, and polarized optical microscopy were used to examine the thermal stability and thermotropic liquid‐crystalline properties of the hyperbranched polyester. The polymer exhibited a nematic mesophase over a wide range of temperatures. The photoreactivity of PAHBP was studied by photolysis under ultraviolet light. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 53–61, 2006  相似文献   

20.
Various topological phase diagrams of blends of main-chain liquid crystalline polymer (MCLCP) and flexible polymer have been established theoretically in the framework of Matsuyama–Kato theory by combining Flory–Huggins (FH) free energy for isotropic mixing, Maier–Saupe (MS) free energy for nematic ordering in the constituent MCLCP, and free energy pertaining to polymer chain-rigidity. As a scouting study, various phase diagrams of binary flexible polymer blends have been solved self-consistently that reveal a combined lower critical solution temperature (LCST) and upper critical solution temperature (UCST), including an hourglass phase diagram. The calculated phase diagrams exhibit liquidus and solidus lines along with a nematic–isotropic (NI) transition of the constituent MCLCP. Depending on the strengths of the FH interaction parameters and the anisotropic (nematic–nematic) interaction parameters, the self-consistent solution reveals an hourglass type phase diagram overlapping with the NI transition of the constituent MCLCP. Subsequently, thermodynamic parameters estimated from the phase diagrams hitherto established have been employed in the numerical computation to elucidate phase separation dynamics and morphology evolution accompanying thermal-quench induced phase separation of the MCLCP/polymer mixture. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3621-3630, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号