首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
3‐Ethyl‐3‐methacryloyloxymethyloxetane (EMO) was easily polymerized by dimethyl 2,2′‐azobisisobutyrate (MAIB) as the radical initiator through the opening of the vinyl group. The initial polymerization rate (Rp) at 50 °C in benzene was given by Rp = k[MAIB]0.55 [EMO]1.2. The overall activation energy of the polymerization was estimated to be 87 kJ/mol. The number‐average molecular weight (M?n) of the resulting poly(EMO)s was in the range of 1–3.3 × 105. The polymerization system was found to involve electron spin resonance (ESR) observable propagating poly(EMO) radicals under practical polymerization conditions. ESR‐determined rate constants of propagation (kp) and termination (kt) at 60 °C are 120 and 2.41 × 105 L/mol s, respectively—much lower than those of the usual methacrylate esters such as methyl methacrylate and glycidyl methacrylate. The radical copolymerization of EMO (M1) with styrene (M2) at 60 °C gave the following copolymerization parameters: r1 = 0.53, r2 = 0.43, Q1 = 0.87, and e1 = +0.42. EMO was also observed to be polymerized by BF3OEt2 as the cationic initiator through the opening of the oxetane ring. The M?n of the resulting polymer was in the range of 650–3100. The cationic polymerization of radically formed poly(EMO) provided a crosslinked polymer showing distinguishably different thermal behaviors from those of the radical and cationic poly(EMO)s. © 2001 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 39: 1269–1279, 2001  相似文献   

2.
The effect of fullerene (C60) on the radical polymerization of vinyl acetate (VAc) with dimethyl 2,2′‐azobisisobutyrate (MAIB) in benzene was investigated kinetically and by means of ESR. C60 was found to act as an effective inhibitor in the present polymerization. All C60 molecules used were incorporated into poly(VAc) during polymerization. The relationship of induction period and initiation rate reveals that a C60 molecule can trap 15 radicals formed in the polymerization system. The polymerization rate (Rp) after the induction period is given by Rp = k [MAIB]0.6 [VAc]2.0 (60 °C), which is similar to that observed in the absence of C60. Stable fullerene radical (C) was observed in the polymerization system by ESR. The C concentration increased with time and was then saturated. The saturation time well corresponds to the induction period observed in the polymerization. About 20% of C60 molecules added could survive as stable C. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2572–2578, 2000  相似文献   

3.
Radicals generated in linoleic acid and deuterated linoleic acid have been trapped by the spin trap 2-methyl-2-nitroso-propane (MNP) and identified by electron spin resonance (ESR) and ENDOR spectroscopy. The formation of two distinct secondary alkyl radical adducts (one conjugated, the other non-conjugated, as shown by their UV absorption spectra) was demonstrated by 11, 11-dideuterio-9-cis-12-cis-linoleic acid using HPLC and ESR spectroscopy.  相似文献   

4.
Active free radicals formed by the electrooxidation of substituted anilines RC6H4NH2 (R = H, p-Br, p-Cl, p-I, p-Me, p-COOH, p-MeCO, p-NO2, m-CO2H, and m-Cl) are trapped by spin trap 2-methyl-2-nitroso propane (MNP). A multiple ESR signal of the solution containing electrolytic aniline and MNP is identified with the spin adduct of MNP and radical cation 1 by theoretical simulation of observed spectrum. Furthermore, ESR spectra of para- or meta-substituted anilines give a reasonable explanation about spin adducts of MNP and the cation 2 or 3 by the same method.  相似文献   

5.
Polymerization of N‐(2‐phenylethoxycarbonyl)methacrylamide (PECMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was investigated in tetrahydrofuran (THF) kinetically and by means of electron spin resonance (ESR). The overall activation energy of the polymerization was calculated to be 58 kJ/mol. The initial polymerization rate (Rp) is expressed by Rp = k[MAIB]0.3[PECMA]2.3 at 60 °C. Such unusual kinetics may be ascribable to primary radical termination and to acceleration of propagation due to monomer association. Propagating poly(PECMA) radical was observed as a 13‐line spectrum by ESR under practical polymerization conditions. ESR‐determined rate constants of propagation (kp, 4.7–10.5 L/mol s) and termination (kt, 4.6 × 104 L/ml s) at 60 °C are much lower than those of methacrylamide and methacrylate esters. The Arrhenius plots of kp and kt gave activation energies of propagation (24 kJ/mol) and termination (25 kJ/mol). The copolymerizations of PECMA with styrene (St) and acrylonitrile were examined at 60 °C in THF. Copolymerization parameters obtained for the PECMA (M1) − St(M2) system are as follows: r1 = 0.58, r2 = 0.60, Q1 = 0.73, and e1 = +0.22. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4264–4271, 2000  相似文献   

6.
The formation of CF3C(O)CF2N(O.)O2CF2C(O)CF3 free radicals upon the UV irradiation of nitropentafluoroacetone (1) in toluene and mesitylene is established by ESR. The most likely cause of their formation is the one-electron oxidation of the solvents by photoexcited1 followed by decay of the radical anion formed from1 with the expulsion of an NO2 anion and attachment of the radical to a molecule of original1. The irradiation of 1 in triethylsilane results in the elimination of a fluoride ion and fixation of a CF3COCFN(O)O' radical. UV irradiation of ketone1 in pentane results in the abstraction of a hydrogen atom from the solvent and the formation of a CF3COCF2N(OH)O ' radical.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 512–514, March, 1993.  相似文献   

7.
Polymerization of N‐(1‐phenylethylaminocarbonyl)methacrylamide (PEACMA) with dimethyl 2,2′‐azobisisobutyrate (MAIB) was kinetically studied in dimethyl sulfoxide (DMSO). The overall activation energy of the polymerization was estimated to be 84 kJ/mol. The initial polymerization rate (Rp) is given by Rp = k[MAIB]0.6[PEACMA]0.9 at 60 °C, being similar to that of the conventional radical polymerization. The polymerization system involved electron spin resonance (ESR) spectroscopically observable propagating poly(PEACMA) radical under the actual polymerization conditions. ESR‐determined rate constants of propagation and termination were 140 L/mol s and 3.4 × 104 L/mol s at 60 °C, respectively. The addition of LiCl accelerated the polymerization in N,N‐dimethylformamide but did not in DMSO. The copolymerization of PEACMA(M1) and styrene(M2) with MAIB in DMSO at 60 °C gave the following copolymerization parameters; r1 = 0.20, r2 = 0.51, Q1 = 0.59, and e1 = +0.70. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2013–2020, 2005  相似文献   

8.
Using ESR spectroscopy, the reaction of P(O)(OPri)2 phosphoryl radicals with C60ML2 (M=Pd, Pt) was studied and the spin-adducts formed were shown to be unstable under the reaction conditions. The 5-addition of Pt(PPh3)4 to the dimer of phosphorylfullerenyl radicals results in metal-containing dimers (RO)2(O)PL2MC60-C60ML2P(O)(OR)2, which dissociate when exposed to visible light to afford C60ML2P(O)(OR)2 radicals; ML2 in these complexes is located in different positions in relation to the radical center. As a result, the ESR spectra contain the superposition of at least five signals of radicals that differ in HFS constants andg-factors.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 5, pp. 938–940, May, 1994.The present work was supported by the Russian Foundation for Basic Research (Projects 93-03-18725 and 93-03-4101).  相似文献   

9.
The effect of fullerene (C60) on the radical polymerization of methyl methacrylate (MMA) in benzene was studied kinetically and by means of ESR, where dimethyl 2,2′-azobis(isobutyrate) (MAIB) was used as initiator. The polymerization rate (Rp) and the molecular weight of resulting poly(MMA) decreased with increasing C60 concentration ((0–2.11) × 10−4 mol/L). The molecular weight of polymer tended to increase with time at higher C60 concentrations. Rp at 50°C in the presence of C60 (7.0 × 10−5 mol/L) was expressed by Rp = k[MAIB]0.5[MMA]1.25. The overall activation energy of polymerization at 7.0 × 10−5 mol/L of C60 concentration was calculated to be 23.2 kcal/mol. Persistent fullerene radicals were observed by ESR in the polymerization system. The concentration of fullerene radicals was found to increase linearly with time and then be saturated. The rate of fullerene radical formation increased with MAIB concentration. Thermal polymerization of styrene (St) in the presence of resulting poly(MMA) seemed to yield a starlike copolymer carrying poly(MMA) and poly(St) arms. The results (r1 = 0.53, r2 = 0.56) of copolymerization of MMA and St with MAIB at 60°C in the presence of C60 (7.15 × 10−5 mol/L) were similar to those (r1 = 0.46, r2 = 0.52) in the absence of C60. © 1998 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 36: 2905–2912, 1998  相似文献   

10.
The polymerization of benzyl N-(2,6-dimethylphenyl)itaconamate (BDMPI) with benzoyl peroxide (BPO) in N,N-dimethylformamide (DMF) was studied kinetically by ESR. The polymerization rate (Rp) at 70°C was given by Rp = k[BPO]0.78[BDMPI]1.1. The overall activation energy of polymerization was determined to be 83.7 kJ/mol. The number-average molecular weight of poly(BDMPI) was in the range of 1500–2000 by gel permeation chromatography. From the ESR study, the polymerization system was found to involve ESR-observable propagating radicals of BDMPI under practical polymerization conditions. Using the polymer radical concentration by ESR, the rate constants of propagation (kp) and termination (kt) were determined in the temperature range of 50–70°C. The kp value seemed dependent on the chain-length of propagating radical. The analysis of polymers by the MALDI-TOF mass spectrometry suggested that most of the resulting polymers contain the dimethylamino terminal group. The copolymerization of BDMPI (M1) and styrene (M2) at 50°C in DMF gave the following copolymerization parameters; r1 = 0.49, r2 = 0.26, Q1 = 1.2, and e1 = +0.63. The thermal behavior of poly(BDMPI) was examined by dynamic thermogravimetry and differential scanning calorimetry. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 1891–1900, 1997  相似文献   

11.
The ESR spectra of the radical adducts of the.CF=CFC(CF3)3 and.C(O)CF(CF3)2 radicals with C60 are characterized by hyperfine interaction with the nucleus of the δ-fluorine atom located above the five-membered cycle in the fullerenyl radical. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1222–1224, June, 1997.  相似文献   

12.
Trimethoxyvinylsilane (TMVS) was quantitatively polymerized at 130 °C in bulk, using dicumyl peroxide (DCPO) as initiator. The polymerization of TMVS with DCPO was kinetically studied in dioxane by Fourier transform near‐infrared spectroscopy. The overall activation energy of the bulk polymerization was estimated to be 112 kJ/mol. The initial polymerization rate (Rp) was expressed by Rp = k[DCPO]0.6[TMVS]1.0 at 120 °C, being closely similar to that of the conventional radical polymerization involving bimolecular termination. The polymerization system involved electron spin resonance (ESR) spectroscopically observable polymer radicals under the actual polymerization conditions. ESR‐determined apparent rate constants of propagation and termination were 13 L/mol s and 3.1 × 104 L/mol s at 120 °C, respectively. The molecular weight of the resulting poly(TMVS)s was low (Mn = 2.0–4.4 × 103), because of the high chain transfer constant (Cmtr = 4.2 × 10?2 at 120 °C) to the monomer. The bulk copolymerization of TMVS (M1) and vinyl acetate (M2) at 120 °C gave the following copolymerization parameters: rl = 1.4, r2 = 0.24, Q1 = 0.084, and e1 = +0.80. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5864–5871, 2005  相似文献   

13.
The propagation kinetics of isoprene radical polymerizations in bulk and in solution are investigated via pulsed laser initiated polymerizations and subsequent polymer analyses via size‐exclusion chromatography, the PLP‐SEC method. Because of low polymerization rate and high volatility of isoprene, the polymerizations are carried out at elevated pressure ranging from 134 to 1320 bar. The temperatures are varied between 55 and 105 °C. PLP‐SEC yields activation parameters of kp (Arrhenius parameters and activation volume) over a wide temperature and pressure range that allow for the calculation of kp at technically relevant ambient pressure conditions. The kp values determined are very low, e.g., 99 L mol?1 s?1 at 50 °C, which is even lower than the corresponding value for styrene polymerizations. The presence of a polar solvent results in a slight increase of kp compared to the bulk system. The kp values reported are important for determining rate coefficients of other elemental reactions from coupled parameters as well as for modeling isoprene free‐radical polymerizations and reversible deactivation radical polymerization with respect to tailored polymer properties and optimizing the polymerization processes.  相似文献   

14.
On dissolution of C60 in concentrated sulfuric acid, ESR spectra of paramagnetic species, which were identified as dimers (C120 +) or oligomers (nC60)+, were recorded. The ESR spectra recorded upon the reaction of a toluene solution of C60 with sulfuric acid were assigned to the radical cation C60 +. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2373–2376, November, 1998.  相似文献   

15.
The radical polymerization of vinyl acetate (VAc) is moderated by iron(II) acetylacetonate (Fe(acac)2) by the organometallic route (OMRP), as well as by degenerative transfer polymerization (DTP) when in the presence of excess radicals, through the formation of thermally labile organometallic FeIII dormant species. The poly(vinyl acetate) (PVAc)‐FeIII(acac)2 dormant species has been isolated in the form of an oligomer and characterized by 1H NMR, EPR, and IR methods, and then used as a single‐component initiator for the OMRP of VAc. The degree of polymerization of this isolated oligomeric species demonstrates the limited ability of Fe(acac)2, relative to the Co(acac)2 congener, to rapidly trap the growing PVAc radical chain. Control under OMRP conditions is improved by the presence of Lewis bases, especially PMe2Ph. On the other hand, iron(II) phthalocyanine inhibits the radical polymerization of VAc completely. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013 , 51, 3494–3504  相似文献   

16.
The electrochemical and chemical oxidation (by hinderedo-benzoquinones or NOClO4) of H2S in nonaqueous solutions (MeCN) proceeds with the donation of one electron. The formation of the unstable radical cation of hydrogen sulfide was detected by cyclic voltammetry. The radical cation decomposes to form H+ and the HS. radical. The generation of the hydrogen sulfide radical cation was confirmed by ESR spectroscopy in a frozen Freon matrix. The possibility of using the hydrogen sulfide radical cation in the synthesis of organosulfur compounds under mild conditions was studied. The concept of the work was proposed by Prof. O. Yu. Okhlobystin. The first electrochemical experiments were performed when he was alive. Published inIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 7, pp. 1182–1188, July, 2000.  相似文献   

17.
Polymerization of 2‐methacryloyloxyethyl phosphorylcholine (MPC) was kinetically investigated in ethanol using dimethyl 2,2′‐azobisisobutyrate (MAIB) as initiator. The overall activation energy of the homogeneous polymerization was calculated to be 71 kJ/mol. The polymerization rate (Rp) was expressed by Rp = k[MAIB]0.54±0.05 [MPC]1.8±0.1. The higher dependence of Rp on the monomer concentration comes from acceleration of propagation due to monomer aggregation and also from retardation of termination due to viscosity effect of the MPC monomer. Rate constants of propagation (kp) and termination (kt) of MPC were estimated by means of ESR to be kp = 180 L/mol · s and kt = 2.8 × 104 L/mol · s at 60 °C, respectively. Because of much slower termination, Rp of MPC in ethanol was found at 60 °C to be 8 times that of methyl methacrylate (MMA) in benzene, though the different solvents were used for MPC and MMA. Polymerization of MPC with MAIB in ethanol was accelerated by the presence of water and retarded by the presence of benzene or acetonitrile. Poly(MPC) showed a peculiar solubility behavior; although poly(MPC) was highly soluble in ethanol and in water, it was insoluble in aqueous ethanol of water content of 7.4–39.8 vol %. The radical copolymerization of MPC (M1) and styrene (St) (M2) in ethanol at 50 °C gave the following copolymerization parameters similar to those of the copolymerization of MMA and St; r1 = 0.39, r2 = 0.46, Q1 = 0.76, and e1 = +0.51. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 509–515, 2000  相似文献   

18.
Summary: A novel method for measuring termination rate coefficients, kt, in free‐radical polymerization is presented. A single laser pulse is used to instantaneously produce photoinitiator‐derived radicals. During subsequent polymerization, radical concentration is monitored by time‐resolved electron spin resonance (ESR) spectroscopy. The size of the free radicals, which exhibits a narrow distribution increases linearly with time t, which allows the chain‐length dependence of kt to be deduced. The method will be illustrated using dodecyl methacrylate polymerization as an example.

Two straight lines provide a very satisfactory representation of the chain‐length dependence of kt over the entire chain‐length region (cR = radical concentration).  相似文献   


19.
The radical polymerization behavior of ethyl ortho-formyl-phenyl fumarate (EFPF) using dimethyl 2,2′-azobisisobutyrate (MAIB) as initiator was studied in benzene kinetically and ESR spectroscopically. The polymerization rate (Rp) at 60°C was given by Rp = k[MAIB]0.76[EFPF]0.56. The number-average molecular weight of poly(EFPF) was in the range of 1600–2900. EFPF was also easily photopolymerized at room temperature without any photosensitizer probably because of the photosensitivity of the formyl group of monomer. Analysis of 1H? and 13C-NMR spectra of the resulting polymer revealed that the radical polymerization of EFPF proceeds in a complicated manner involving vinyl addition and intramolecular hydrogen-abstraction. The polymerization system was found to involve ESR-observable poly(EFPF) radicals under the actual polymerization conditions. ESR-determined rate constant (2.4–4.0 L/mol s) of propagation at 60°C increased with decreasing monomer concentration, which is mainly responsible for the observed low de-pendency of Rp on the EFPF concentration. Copolymerizations of EFPF with some vinyl monomers were also examined. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Direct ESR and spin-trapping experiments were used to study the behavior of Nafion, a perfluorinated ionomer membrane used in fuel cells, when exposed in the laboratory to oxygen radicals produced by Fenton and photo-Fenton reactions. DMPO (5,5-dimethyl-1-pyroline) was used as the spin trap. The results suggest that the two ESR methods provide complementary information on Nafion fragmentation. The presence of membrane-derived fragments was suggested indirectly by the presence of a broad signal (line width ≈ 84 G) after prolonged exposure of the membrane to the Fenton reagent based on Ti(III), and by the DMPO adduct of a carbon-centered radical in the spin-trapping experiments. The most convincing proof for the presence of perfluorinated radicals was obtained in Nafion membranes partially neutralized by Cu(II), Fe(II) and Fe(III) upon exposure to UV-irradiation in the presence or absence of H2O2 (photo-Fenton treatment). Identification of the chain-end radical RCF2CF 2 with magnetic parameters different to those determined for the chain-end detected in γ-irradiated Teflon, was taken as evidence for the attack of reactive oxygen radicals on the side-chain of the membrane. Additional support for this suggestion was the detection of the “quartet” ESR signal assigned to the CF3CO radical, and of the “quintet” ESR signal assigned to the radical centered at the intersection of the main and side chains. The limitations and advantages of each approach are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号