首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The entropy of inhomogeneous polymer solutions has been evaluated using a lattice model. Previous models for polymer solutions considered only the enthalpic contributions, and a more complete expression for the free energy is obtained by adding the entropic term. The resulting expression is used to predict the characteristics of spinodal decomposition of polymer solutions and the interfacial tension between demixed polymer solutions. There is general improvement in the agreement between theory and experiment when the entropic effects are included.  相似文献   

2.
The phase equilibria in polymer–liquid 1–liquid 2 ternary systems have been calculated on the basis of the Flory-Huggins theory of polymer solutions. A new approximation method based on the “cluster” concept has been introduced for mixed solvents comprising a solvent and a nonsolvent. This concept has been verified with polystyrene–solvent–methanol systems.  相似文献   

3.
A theory pertinent to the nucleation of polymer-diluent systems for molecules of finite molecular weight has been developed. These results have been applied to the crystallization from polyethylene-α-chloronaphthalene mixtures using molecular weight fractions of polyethylene ranging from 4,000 to 250,000. This analysis is carried out over the composition range extending from pure polymer to a polymer fraction of 0.30. According to this theory, the interfacial basal free energy decreases as either the molecular weight or diluent concentration decreases.  相似文献   

4.
Sedimentation equilibrium in the ultracentrifuge means that there is such a distribution of molecular species throughout the cell, that the centrifugal forces are balanced by differences in the activities. This provides a method for determination of the activities and the chemical potentials in polymer solutions which, in principle, is very simple and reliable. A complication is caused by polydispersity of the dissolved polymer. If one assumes that the interaction parameter depends on concentration and temperature, but not on molecular weight, it is possible to determine the chemical potential of polymer and solvent from the ultracentrifugal data. Experiments have been carried out on the systems polystyrene–toluene and polystyrene–cyclohexane at different temperatures and in the concentration range 0–80 wt-%. The results are expressed in the data for the chemical potential of the solvent, the number average chemical potential of the polymer and the interaction parameter χ.  相似文献   

5.
In general liquid–liquid demixing processes are responsible for the porous morphology of membranes obtained by immersion precipitation. For rapidly crystallizing polymers, solid–liquid demixing processes also generate porous morphologies. In this study, the interference of both phase transitions has been analyzed theoretically using the Flory–Huggins theory for ternary polymer solutions. It is demonstrated that four main thermodynamic and kinetic parameters are important for the structure formation in solution: the thermodynamic driving force for crystallization, the ratio of the molar volumes of the solvent and the nonsolvent, the polymer–solvent interaction parameter, and the rate of crystallization of the polymer compared to the rate of solvent-nonsolvent exchange. An analysis of the relevance of each of these parameters for the membrane morphology is presented. © 1997 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 35: 763–770, 1997  相似文献   

6.
A relation is proposed which gives the error in determination of molecular weights of polymer samples using the extrapolation of the Mark–Houwink–Sakurada equation into the low-molecular-weight region. The error is directly related to the exponent α of the Mark–Houwink–Sakurada equation and the relation is the same for a number of polymer + solvent systems.  相似文献   

7.
A nonequilibrium thermodynamic approach has been developed for describing the emergence of fiber morphologies from a liquid crystalline polymer solution undergoing solvent evaporation, including fibrillar structures, concentric rings, and spiral structures. We utilized Matsuyama–Kato free energy for main‐chain liquid crystalline polymer (MCLCP) solutions, which is an extension of Maier–Saupe theory for nematic ordering and incorporates a chain‐stiffening, combined with Flory‐Huggins free energy of mixing. Temporal evolution of the concentration and nematic order parameters pertaining to the above free energy density of liquid crystalline polymer solution was simulated in the context of time‐dependent Ginzburg–Landau theory coupled with the solvent evaporation rate equation under the quasi‐steady state assumption. The emerged morphological patterns are discussed in relation to the phase diagram of the MCLCP solution and the rate of solvent evaporation. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 429–435, 2007  相似文献   

8.
A new inorganic polymer–platinum complex, silicasupported polysilazane–platinum complex, has been prepared and found to be capable of catalyzing the oxygenation of 3-pentanol to 3-pentanone in 100% yield at moderate temperature and under atmospheric oxygen pressure. Water is the best solvent for this reaction. This inorganic polymer complex is very stable in the reaction and can be reused several times without any appreciable change in catalytic activity.  相似文献   

9.
The network parameters of swollen, solution-crosslinked polymer filaments can be collected from deswelling measurements in solutions of nonpermeating polymer or, as shown in this paper, from the stress–strain relation when in equilibrium with the surrounding solvent. The degree of swelling, at which the partial molar free energy of elasticity equals zero, is found to vary with solvent power in agreement with earlier findings on other systems. Comparison with results of studies on rubber networks crosslinked in the absence of diluent show that previously observed discrepancies between theory and experiment can be attributed to the deficiency of the single term involving the one-third power of the volume fraction of polymer in the swollen network to describe the contribution of the partial elastic free energy.  相似文献   

10.
The predictive and correlative capabilities of two recent versions of the free-volume theory for self-diffusion in polymer–solvent systems are examined by comparisons with experimental data. Neither the Vrentas–Duda free-volume theory nor the Paul version generally provides satisfactory predictions for the temperature and concentration variations of solvent self-diffusion coefficients. However, the Vrentas–Duda theory does provide good correlations of solvent self-diffusion data, and, furthermore, this theory can provide good predictions if a small amount of solvent self-diffusion data is used to help estimate the parameters of the theory. New diffusivity and equilibrium data were collected for the toluene-PVAc system to provide a broader database for evaluation of the self-diffusion theories.  相似文献   

11.
The synthesis of a polymer‐supported inhibitor (PSI) and its inhibition performance for free‐radical polymerization are reported for the first time. A special method has been devised to synthesize PSI with pure and abundant hydroquinone (HQ) groups anchored onto the polymer surface. A thin HQ/acetone (AC) solution is sandwiched between two polymer films. Under ultraviolet irradiation, AC as an photoinitiator quickly and effectively grafts HQ onto the polymer surface. PSI has been characterized with ultraviolet–visible and attenuated total reflectance/Fourier transform infrared spectroscopy. For potential applications, PSI has been used to inhibit the thermal polymerization of styrene and methyl methacrylate. The corresponding inhibition performance has been investigated through the measurement of the induction period with the dilatometer method. With the same absolute amount, the maximum inhibition ability of PSI approaches half that of a free inhibitor. Increasing the dispersion degree of PSI is favorable for the enhancement of the inhibition ability. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4074–4083, 2004  相似文献   

12.
Coarse‐grained molecular dynamics simulations are used to investigate the adsorption behavior of monodisperse and bidisperse polymer chains on the nanoparticle (NP) surface at various polymer–NP interactions, chain lengths, and stiffness. At a strong polymer–NP interaction, long chains preferentially occupy interfacial region and squeeze short chains out of the interfacial region. Semiflexible chains with proper stiffness wrap NPs dominantly in a helical fashion, whereas fully flexible chains constitute the surrounding matrix. As chain stiffness increases, the results of the preferential adsorption are the opposite. The chain‐length or chain‐stiffness‐induced selective adsorption behavior of polymer chains in the polymer–NP interfacial region relies on a delicate competition between entropic and enthalpic contributions to the total free energy. These results could provide insights into polymer–NP interfacial adsorption behavior and guide the design of high‐performance nanocomposites. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1829–1837  相似文献   

13.
The free energy of an inhomogeneous polymer-polymer-solvent system has been obtained by extending Debye's approach for a polymer-solvent system. Our ternary result reduces to Debye's result for a binary polymer-solvent system and to McMaster's result for a binary polymer-polymer system at the appropriate limits. Like Debye's work, we neglect the entropic gradient contribution to free energy. Based on the ternary result we suggest a generalized expression for the free energy of multiple polymers dissolved in a common solvent. This expression is used to find the free energy of an inhomogeneous polydispersed polymer-solvent system.  相似文献   

14.
The swelling behavior of acid form poly(styrene sulfonate) (PSS‐H) thin films were investigated using in situ spectroscopic ellipsometry (SE) to probe the polymer–solvent interactions of ion‐containing polymers under interfacial confinement. The interaction parameter (χ), related to the polymer and solvent solubility parameters in the Flory–Huggins theory, describes the polymer‐solvent compatibility. In situ SE was used to measure the degree of polymer swelling in various solvent vapor environments, to determine χ for the solvent‐PSS‐H system. The calculated solubility parameter of 40–44 MPa1/2 for PSS‐H was determined through measured χ values in water, methanol, and formamide environments at a solvent vapor activity of 0.95. Flory–Huggins theory was applied to describe the thickness‐dependent swelling of PSS‐H and to quantify the water‐PSS‐H interactions. Confinement had a significant influence on polymer swelling at low water vapor activities expressed as an increased χ between the water and polymer with decreasing film thickness. As the volume fraction of water approached ~0.3, the measured χ value was ~0.65, indicating the water interacted with the polymer in a similar manner, regardless of thicknesses. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2017 , 55, 1365–1372  相似文献   

15.
The method of density and refractive index increments was used for the determination of the coefficients of selective sorption of acetophenone and bromoform on polymer in the system poly(methyl methacrylate)–isopropanol–acetophenone–bromoform as a function of the composition of the ternary solvent. In systems containing more than 80% by volume of bromoform the precipitant—isopropanol—is selectively sorbed. The conditions under which the method gives satisfactory results and some methodological problems of densitometry have been discussed.  相似文献   

16.
The free-volume theory describing diffusion in polymer–solvent systems is reexamined. Calculation of the specific free volume for such systems is discussed, and equations are presented for the determination of the self-diffusion coefficients of the polymer and the solvent. Conditions under which the mutual diffusion coefficient can be deduced solely from free-volume considerations are clarified, and a more general version of the free-volume diffusion theory proposed by Fujita is presented. The further restrictions needed for the theory of Fujita are discussed, and it is concluded that these additional restrictions are responsible for failures of the Fujita theory.  相似文献   

17.
An evaluation of free-volume theories for solvent self-diffusion is carried out using recent comprehensive data sets for penetrant self-diffusion in polymer solutions. Different theories are compared, and free-volume theories in the prediction of penetrant self-diffusion coefficients in glassy polymer systems is also evaluated. © 1993 John Wiley & Sons, Inc.  相似文献   

18.
The vapor–liquid equilibria of binary polymer–solvent systems was modeled using the Non-Random Hydrogen Bonding (NRHB) model. Mixtures of poly(ethylene glycol), poly(propylene glycol), poly(vinyl alcohol) and poly(vinyl acetate) with various solvents were investigated, while emphasis was put on hydrogen bonding systems, in which functional groups of the polymer chain can self-associate or cross-associate with the solvent molecules. Effort has been made to explicitly account for all hydrogen bonding interactions. The results reveal that the NRHB model offers a flexible approach to account for various self- or cross-associating interactions. In most cases model's predictions (using no binary interaction parameter kij = 0) and model's correlations (using one temperature independent binary interaction parameter, kij ≠ 0) are in satisfactory agreement with the experimental data, despite the complexity of the examined systems.  相似文献   

19.
A method is presented for anticipating condition under which anomalous diffusion effects can be expected for amorphous polymer–solvent systems. The diffusion process is characterized by a dimensionless group called the diffusion Deborah number, and a method for calculating this dimensionless number is presented. Deborah number diagrams are constructed for the unsteady diffusion of ethylbenzene and polystyrene in thin films, and observed diffusion phenomena are discussed on the basis of these diagrams.  相似文献   

20.
The subject of this article is the combined interpretation of intradiffusion and mutual‐diffusion data for polymer–solvent mixtures in terms of integrals over velocity self‐correlation functions and velocity cross‐correlation functions. The combination of mutual‐diffusion, intradiffusion, and activity data allows the evaluation of velocity‐correlation coefficients (VCCs) and distinct‐diffusion coefficients in systems containing one monodisperse solute. This study is the first attempt to extend these approaches to polymers that are polydisperse solutes. Because of the polydispersity, this correlation analysis may become critical for polymers. Its application to polydisperse samples requires the reduction of intradiffusion and mutual‐diffusion coefficients to the same average. After such a reduction, the VCCs and distinct‐diffusion coefficients are evaluated for a homologous series of poly(ethylene glycol)s (PEGs). Attractive PEG–PEG interactions depend on the chain length and concentration of PEG. In this analysis, network formation in PEG–water systems appears to be a smooth process. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 43–51, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号