首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 0 毫秒
1.
Synthesis and Structures of Bis(amino)germa and -stanna Chalcogenides The cyclic bis(amino)germylene 1 and the -stannylene 2 react with elemental S, Se and Te to yield oxydation products of the general formula Me2Si(NtBu)2MEl2M(NtBu)2SiMe2 (M = Ge, El = S ( 4 ), El = Se ( 5 ), El = Te ( 6 ); M = Sn, El = Se ( 9 ), El = Te ( 10 )). As may be deduced from X-ray structures ( 4, 5, 6, 9, 10 ) all compounds show similar central skeletons: the three spirocyclicly connected four-membered rings SiN2M (2x) and MEl2M are oriented in an orthogonal way to oneanother. The germanium and the tin atoms thus are in a distorted tetrahedral coordination while the chalcogen atoms only have two neighbours in acute angles. If 1 is allowed to react with trimethylamine-N-oxide, the oxygen is transferred to germanium and [Me2Si(NtBu)2GeO]3 ( 3 ) is formed. Contrarily to the other compounds 3 can be described as a trimer. There is a central almost planar Ge3O3 six-membered ring, the germanium atoms serving as spiro-cyclic centres to three GeN2Si four-membered rings (X-ray structure of 3 ). In the central four-membered rings of 4, 5, 6, 9 and 10 no transanular bonding between the chalcogen atoms have to be considered although these atoms have small distances to oneanother. The mean M-El distances have been found to be: Ge? O 1.762(5), Ge? S 2.226(3), Ge? Se 2.363(3), Ge? Te 2.592(5), Sn? Se 2.536(3), Sn? Te 2.741(3) Å.  相似文献   

2.
Reaction of a Cyclic Bis(amino)germylene with Germaniumazides: Trapping-Reactions of Unstable Germa-Imines . The cyclic bis(amino)germylene 1 reacts with different germaniumazides of the type Me2Si(NtBu)2Ge(R)N3 (R = Me ( 2 ), tBu ( 3 ), N(SiMe3)2 ( 4 ), R = N3 ( 5 )). With the exception of 4 all azides lose dinitrogen when treated with 1 and the GeII center coordinates the α-nitrogen of the azide group. It seems to be reasonable to assume a transient germaimine (nitride) which is trapped by further reaction with the azide molecules 2 and 5 or by reaction with the solvent pyridine ( 3 ). In the case of 2 the germatetrazole [Me2Si(NtBu)2]GeN4[Ge(NtBu)2SiMe2]2 ( 6 ) is formed, the tetrazole nitrogens being exclusively substituted by germanium atoms (point symmetry of the molecule Cs(m)). When 1 is treated with 5 a tris(germa)amine [Me2Si(NtBu)2Ge(N3)]3N ( 8 ) is formed, which has an azide group attached to each Ge-atom. X-ray analysis reveals that the nine nitrogen atoms of the azide groups are coplanar with the trigonal planar Ge3N moiety (crystallographic symmetry: 3/m). The reaction of 1 with 3 is very surprising: the pyridine in the product Me2Si(NtBu)2Ge(C5H4N)? N(H)Ge(tBu)(NtBu)2SiMe2 ( 7 ) is bonded via an α-carbon atom while the remaining hydrogen has added to the nitride-nitrogen. 6 crystallizes in the monoclinic system space group C2/m, a = 24.306(9), b = 10.933(6), c = 19.420(9) Å, β = 91.81(2)° and Z = 4. 7 crystallizes in the hexagonal system space group P63/m with a = b = 16.73(1), c = 11.006(8) Å, γ = 120° and Z = 2, and 8 crystallizes in the monoclinic system space group P21/n, a = 11.341(6), b = 26.086(9), c = 13.244(7) Å, β = 98. I2(2)° mit Z = 4.  相似文献   

3.
Chemistry and Structural Chemistry of Phosphides and Polyphosphides. 53. Preparation, Properties, and Vibrational Spectra of the Cage Anions P113? and As113? The Zintl-phases M3X11 (M = Na, K, Rb, Cs; X = P, As) are prepared from the elements or from M3X7 and X. The compounds undergo a first-order phase transition from the crystalline to the plastically crystalline state. Unit cell and space group of both modifications and the transition temperature Tc are determined. The vibrational spectra of the crystalline compounds and the Raman spectrum of the P113? anion in en-solution as well are measured. The assignment of the frequencies is given, based on the 32-D3 symmetry of the X113? cage anion. Normal coordinate analysis is carried out in terms of Cartesian coordinates to avoid the problem of redundancies in using internal coordinates. The force constants [mdyn Å?1] obtained for the characteristic bonds r, s, and t are: f = 1.34, f = 1.20, f = 1.08; f = 1.1, f = 0.91. Normal vibrations and the potential energy distribution (PED) are discussed.  相似文献   

4.
Metal Derivatives of Molecular Compounds. IV Synthesis, Structure, and Reactivity of Lithium [Tris(trimethylsilyl)silyl]tellanide · DME Lithium tris(trimethylsilyl)silanide · 1,5 DME [3] and tellurium react in 1,2-dimethoxyethane to give colourless lithium [tris(trimethylsilyl)silyl]tellanide · DME ( 1 ). An X-ray structure determination {-150 · 3·C; P21/c; a = 1346.6(4); b = 1497.0(4); c = 1274.5(3) pm; β = 99.22(2)·; Z = 2 dimers; R = 0.030} shows the compound to be dimeric forming a planar Li? Te? Li? Te ring with two tris(trimethylsilyl)silyl substituents in a trans position. Three-coordinate tellurium is bound to the central silicon of the tris(trimethylsilyl)silyl group and to two lithium atoms; the two remaining sites of each four-coordinate lithium are occupied by the chelate ligand DME {Li? Te 278 and 284; Si? Te 250; Li? O 200 pm (2X); Te? Li? Te 105°; Li? Te? Li 75°; O? Li? O 84°}. The covalent radius of 154 pm as determined for the DME-complexed lithium in tellanide 1 is within the range of 155 ± 3 pm, also characteristic for similar compounds. In typical reactions of the tellanide 1 [tris(trimethylsilyl)silyl]tellane ( 2 ), methyl-[tris(trimethylsilyl)silyl]tellane ( 4 ) and bis[tris(trimethylsilyl)silyl]ditellane ( 5 ) are formed.  相似文献   

5.
Sulfur Dioxide as Ligand and Synthon. XII. Synthesis and Reaction Behaviour of Nickel(II) Complexes with Terdendate Anionic Ligands of the Type (C6H3{CH2NR1R2}2?2,6)? Organonickel(II) complexes of the type [NiX{C6H3(CH2NR1R2)2?2,6}] (X = halide OH2+/CF3SO3?; R1?R2?Et 1 ; R1?R2?i? Pr 2 ; R1 = Me, R2 = Cy 3 ; (NR1R2) = piperidino 4 ; (NR1R2) = pyrrolidino 5 ) are described. 1H and 13C NMR and UV/Vis spectra were recorded, and the X-ray crystal structure of 1 a (X = Br) was determined. This complex crystallizes orthorhombically in the space group Pbca with a = 1 335.8(2) pm, b = 1 903.3(3) pm, c = 1 365.4(3) pm and Z = 8, and has an approximately square-planar geometry. 4 and 5 show a reversible binding of SO2 which has been detected by means of IR photoacoustic spectroscopy. The reactions of 1 – 5 with CS2 and PhNSO are discussed.  相似文献   

6.
Halogeno Metallates of Transition Elements with Cations of Nitrogen‐containing Heterocyclic Bases. VII Two Oxidation States and Four Different Iron Coordinations in one Compound. Synthesis, Crystal Structure, and Spectroscopic Characterization of 1,4‐Dimethylpiperazinium Chloroferrate(II, III), (dmpipzH2)6[FeIICl4]2[FeIIICl4]2[FeIICl5] [FeIIICl6] The title compound being stable on air crystallizes from aqueous hydrochloric acid solutions in the trigonal space group R3 with a = 13,197(1), c = 38,405(6) Å. Besides the cations in chair form, the structure contains six discrete, mononuclear chloroferrate anions arranged on a threefold axis. Tetrahedral, octahedral, and, for the first time with iron(II), trigonal bipyramidal metal coordinations occur. Four sub‐spectra contributing to the 57Fe Mössbauer spectrum can be distinguished and have been attributed to all four types of chloroferrate anions in the structure. The Raman spectroscopic investigation of orientated single crystals allows to recognize polarized and non‐polarized vibrations as well as to attribute all observed frequencies.  相似文献   

7.
Transition Metal Complexes of P-rich Phosphanes and Silylphosphanes. XI. Formation, Reactions, and Structures of Chromium Carbonyl Complexes from Reactions of Li(THF)22-(tBu2P)2P] with Cr(CO)5 · THF and Cr(CO)4 · NBD Reactions of Li(THF)22-(tBu2P)2P] 1 with Cr(CO)5 · THF yield Li(THF)2Et2O[Cr(CO)42-(tBu2P)2P}η1-Cr(CO)5] 2 and the compounds [Cr(CO)42-(tBu2P)2PH}] 3 , [Cr(CO)51-(tBu2P)2PH}] 4 , (tBu2P)2PH 5 and tBu2PH · Cr(CO)5 6 . The formation of 3, 4, 5 and 6 is due to byproducts coming from the synthesis of 1. 2 reacts with CH3COOH under formation of 3 . After addition of 12-crown-4 1 with NBD · Cr(CO)4 in THF forms Li(12-crown-4)2[Cr(CO)4-{η2-(tBu2P)2P}] 7 (yellow crystals). 7 reacts with CH3COOH to 3 – which regenerates 7 with LiBu – with Cr(CO)5THF to compound 2 , with NBD · Cr(CO)4 in THF to 2 and 3 (ratio 1 : 1). With EtBr, 7 forms [Cr(CO)42-(tBu2P)2PEt}] 8 , and [Cr(CO)42-(tBu2P)2PBr}] 9 with BrCH2? CH2Br. The compounds were characterized by means of 1H, 13C, 31P, 7Li NMR spectroscopy, IR spectroscopy, elementary analysis, mass spectra, and 2, 3 and 4 additionally by means of X-ray diffraction analysis. 2 crystallizes in the space group P1 with 2 formula units in the elementary cell; a = 10.137(9), b = 15.295(12), c = 15.897(14) Å; α = 101.82(7), β = 91.65(7), γ = 98.99(7)°; 3 crystallizes in the space group P2t/n with 4 molecules in the elementary unit; a = 11.914(6), b = 15.217(10), c = 14.534(10) Å; α = 90, β = 103.56(5), γ = 90°. 4 : space group P1 with 2 molecules in the elementary unit; a = 8.844(4), b = 12.291(6), c = 14.411(7) Å, α = 66.55(2), β = 89.27(2), γ = 71.44(2)°.  相似文献   

8.
Mono- and Di-t-Butylcyclopentadienyl Carbonyl Complexes of Iron and Molybdenum — Crystal Structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3-t-Bu2-1,3) Cothermolysis of M(CO)m (M = Fe, m = 5; M = Mo, m = 6) with t-Bu-substituted cyclopentadienyls constitutes a simple synthesis of complexes of the type [Cp*M(CO)n]2 (CP* = n5-C5H3 (t-Bu), R, R = H, t-Bu; M = Fe, Mo; n = 2, 3). Each synthesis has an optimal temperature. The yield of Fe complexes decreases at temperatures above 130°C because of decomposition of the product. Optimal yields of [Cp*Mo(CO)3]2 are obtained at 130–140°C, whereas at 160°C complexes of the type [Cp*Mo(CO)2]2 with formal Mo? Mo triple bonds are obtained. The structure of the complexes is discussed on the basis of 1H-, 13C-NMR, IR, and mass spectrometry. The structure of [Cp″Mo(CO)2]2 (Cp″ = n5-C5H3t-Bu2-1,3) was determined by X-ray crystallography at ?95°C. It crystallises in the space group Pbca, with cell constants a = 1808.6(6), b = 1308.5(4), c = 2507.9(9) pm, Z = 8, R = 0.031 for 3794 reflections. The Mo? Mo bond length of 253.3 pm is very long for a formal triple bond. The Cp″? Mo? Mo? Cp″ axis is non-linear.  相似文献   

9.
Polysulfonyl Amines. LXIX. Novel Pnictogen Disulfonylamides: Synthesis of Bismuth Dimesylamides and Crystal Structures of the Twelve-Membered Cyclodimer [Ph2BiN(SO2Me)2]2 and of the Ionic Complex [H(OAsPh3)2](MeSO2)2N? The novel bismuth(III or V) disulfonylamides Ph2BiN(SO2Me)2 ( 1 ), PhBi[N(SO2Me)2]2 ( 2 ), PhBi[N(SO2Me)2]Br ( 3 ), Bi[N(SO2Me)2]2Cl ( 4 ), Bi[N(SO2Me)2]Cl2 · 12-crown-4 ( 5 ) and Ph3Bi[N(SO2Me)2]Cl ( 6 ) were obtained by acidolysis of Ph3Bi with HN(SO2Me)2 (→ 1 ), by metathesis of AgN(SO2Me)2 with Ph2BiCl (→ 1 ) or PhBiBr2 (→ 2, 3 ), by condensation of BiCl3 with Me3SiN(SO2Me)2 (→ 4 ; in presence of 12-crown-4: → 5 ), or by oxidative addition of ClN(SO2Me)2 to Ph3Bi (→ 6 ). Independently of the molar ratio employed, triphenylarsane oxide and dimesylamine form the crystalline 2/1 complex [H(OAsPh3)2](MeSO2)2N? ( 7 ). The crystal packing of 7 (monoclinic, space group C2/c) consists of discrete cations displaying crystallographic Ci symmetry and a strong O …? H …? O hydrogen bond (H atom located on a centre of symmetry, O …? O′ 241.2 pm, As? O …? O′ 120°, As? O 168.3 pm), and chiral anions with crystallographic C2 symmetry (N? S 157.3 pm, S? N? S 122,9°). In the solid state, the bismuth(III) compound 1 (triclinic, space group P1 ) is a cyclodimer with crystallographic Ci symmetry, in which two Ph2Bi cations are connected through two (α-O, ω-O)-donating dimesylamide ligands to form a roughly twelve-membered [BiOSNSO]2 ring (Bi? O 239.7 and 246.6, O? S 148.0 and 145.4, S? N 157.7 and 159.2 pm, Bi? O? S 126.6 and 127.5°). The bismuth atom adopts a pseudo-trigonal-bipyramidal geometry (O? Bi? O 165.4, C? Bi? C 93.0, O? Bi? C 83.8 to 86.5°). The essentially similar conformations of the discrete anion in 7 and of the bidentate bridging ligand in 1 are discussed in detail.  相似文献   

10.
Polysulfonylamines. LXXXIV. Isotypic Structures in the Dimesylamide Complex Series [M(H2O)4{(CH3SO2)2N}2] (M?Mg, Ca, Ni, Cu, Zn, Cd) and [M(py)4{(CH3SO2)2N}2] (M?Ni, Cu, Zn, Cd) The crystal structures of the trans-octahedral complexes [M(H2O)4{(CH3SO2)2N}2] (M?Ca, Cd), in which the dimesylamide anion acts as a monodentate O-ligand and a tetrafunctional hydrogen bond acceptor, were determined by low-temperature X-ray diffraction. Both belong to an isotypic series (triclinic, space group P1 , Z = 1) that had previously been characterized for M?Mg, Ni, Cu and Zn (Z. Anorg. Allg. Chem. 1996 , 622, 1065). In this structure there exists an extended network of strong hydrogen bonds which is probably the underlying reason why the structure type surprisingly persists across the whole series. To support this explanation by indirect evidence from comparison with suitable structures devoid of strong hydrogen bonding, the analogous trans-octahedral complexes [M(py)4{(CH3SO2)2N}2] (M?Mn, Co, Ni, Cu, Zn, Cd) were prepared by treating M[(CH3SO2)2N]2 with pyridine, and the crystal structures of the Ni, Cu, Zn and Cd compounds were studied by low-temperature X-ray crystallography. As anticipated, the four pyridine complexes do not form an isotypic series but instead two isotypic pairs consisting of the Ni and Zn compounds (monoclinic, space group P21/n, Z =2) and of the Cu and Cd complexes (triclinic, space group P1, Z = 1). All molecules of the aqua and the pyridine complexes display crystallographic centrosymmetry. In the hydrates, the mean M? OH2 and the M? O(anion) distances are 232.6 and 232.7 pm for M ? Ca, 225.5 and 230.3 pm für M ? Cd. The mean M? N and the M? O(anion) bond lengths of the pyridine species amount to 211.8 and 213.1 pm for M ? Ni, 217.0 and 218.5 pm for M ? Zn, 232.8 and 234.4 pm for M ? Cd; the corresponding values for the severely Jahn-Teller distorted Cu complex are 203.6 and 254.5 pm. In the crystals of the pyridine complexes, each methyl group is connected through a weak C? H…?O bond to a sulfonyl oxygen atom of an adjacent molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号